City of Madison - Public Information Meeting

Enhanced Phosphorus Removal from Stormwater -East Branch Starkweather Cr. Project

July 21, 2016

Greg Fries City of Madison Engineering Division

Jim Bachhuber Brown and Caldwell

Topics

- ➤ Project Background & Setting
- ➤ Project Purpose and Goals
- ➤ Project Specifics Feasibility Study
 - Background Analysis
 - Project Components
 - Next Steps
- ➤ Discussion & Questions

2

Project Background, Setting & Goals

Greg Fries; City of Madison

Starkweather Creek Phosphorus Treatment System

Project Background

Project Background

Rock River Basin TMDL:

➤ Completed in 2011

Madison Stormwater Requirements:

- Phosphorus Reduction of ~ 14,000 lbs./yr.
- >= 55 % City-wide Reduction from Stormwater

Background – Why Propose Coagulant Treatment for Stormwater?

- > Ponds are expensive. Example: \$1.2 million for recent pond
 - Removes ~ 225 lbs. of phosphorus / year
 - ~ \$300/lbs./year (does not include land or maintenance)
 - Modest phosphorus removal (~ 40% 50%)
 - Land opportunities are limited for large ponds
- City is partnered with Madison Met. Sewerage District in Yahara WINS, however ...
- Many tools will be needed to address the phosphorus reduction needs – this is an important "piece of the puzzle"

Background - Project Site

- ➤ City investigated many locations for treatment system
- ➤ Ideal site:
 - Unused, open space
 - Near an urban creek with large watershed
 - · Does not impact parks or other adjacent lands
 - Provides potential for other Public Works' needs and public benefits

Background - Project Site

R.R. Spur Culverts: East Branch Starkweather Cr. - downstream

Background - Project Site

R.R. Spur Culverts: East Branch Starkweather Cr. - upstream

Project Goals

- ➤ Maximize phosphorus reduction to Lake Monona
- ➤ Visibly improve Starkweather Creek water quality
- > Improve aesthetics and public use of Starkweather corridor.

Feasibility Study

Jim Bachhuber; Brown and Caldwell

Starkweather Creek Phosphorus Treatment System

Feasibility Study - Project Aspects

- Conducted January 2015 March 2016
- ➤ Water Quality & Coagulant Testing
- ➤ Watershed Runoff Modeling
- ➤ Conceptual Design
- **▶** DNR Discussions

Coagulant Testing

Field Sampling:

- ▶ 6 Runoff Events in Starkweather Cr.
- > Capture spring, summer, and fall conditions
- >Test different coagulants for performance

Coagulant Testing

Lab Procedure

- ➤ Split raw samples
- ➤ Analyze raw water samples
- ➤ Add coagulants & rapid mix
- ➤ Analyze jars at start and 24 hrs.

Coagulant Testing

Tested 5 Coagulants:

- ➤ Aluminum Sulphate (Alum)
- ➤ Polyaluminum Chloride (PAC) (3 types)
- ➤ Aluminum Chlorohydrate (ACH)
- ➤ Tested at Various Doses
 - 3 mg/L 9 mg/L of Aluminum

Coagulant Testing - Results

Recommend Aluminum Chlorohydrate (ACH)

- ➤ Target ACH concentration: 4.0 5.0 mg/L Al
- > Phosphorus reduction: 78% 95% (avg. 85%)
- ➤ Post treatment dissolved Al ≤ raw water Al
- ➤ No sulfates
- ➤ No pH impacts
- >ACH has lower freezing temperature (19 F)
- ➤ Requires less bulk storage volume

Watershed Runoff Modeling

- Continuous simulation modeling
- Selected 2002 2011 rain data.

Water Year (OctSept.)	Annual Rain Depth (in.) *		
1994-1995	29.85	15.25%	
1995-1996	34.5	2.05%	
1996-1997	30.33	13.89%	
1997-1998	38.23	-8.54%	
1998-1999	34.42	2.27%	
1999-2000	39.22	-11.35%	
2000-2001	37.18	-5.56%	
2001-2002	27.75	21.21%	
2002-2003	24.43	30.64%	in g
2003-2004	44.3	-25.78%	ge
2004-2005	25.76	26.86%	Ψ
2005-2006	35.37	-0.42%	H joi
2006-2007	43.51	-23.53%	Selected H&H Modeling Period
2007-2008	44.48	-26.29%	ed
2008-2009	36.98	-4.99%	<u>e</u> ct
2009-2010	41.3	-17.26%	Sel
2010-2011	28.49	19.11%	
2011-2012	25.23	28.37%	
2012-2013	47.73	-35.52%	
2013-2014	35.36	-0.39%	
1994 - 2013 Avg:	35.22		
Modeled Period Avg.:	35.24	-0.05%	

Conceptual Design Overview

Treatment System Performance

- ➤ Raw Water Phosphorus Conc. = 0.205 mg/L
- >Annual Treatment Volume ~ 3,500 ac-ft
- ➤ Coagulant Effectiveness = 85%
- > Estimated Annual Phos. Removal = 1,660 lbs/year
- ➤ City of Madison TMDL Phos. reduction goal: ~14,000 lbs./yr.
- >~ 12% of TMDL Goal

Conceptual Design - Costs

Preliminary Cost Estimates from Feasibility Study:

Construction / Capital Costs: \$5,567,000 (does not include land costs)

➤ Annual O&M Costs: \$351,000

≥20 year life cycle \$/lb. P removed: \$380/lb. of P.

➤ Conventional Treatment:

 Ponds: ~ \$300/lb. P removal. (not including maintenance or land cost)

 Catch Basin Treatment: ~ \$500 / Ib. P removal (includes capital and maintenance cost)

Next Steps

- ➤ Continued Public Outreach (ongoing)
- ➤ Land Acquisition (2016 2017)
- ➤ Additional Site Investigations (2016 2017)
 - Groundwater modeling
 - Wetland delineation
 - Environmental Testing
- ➤ Continued DNR / Agency Coordination
- ▶ Permitting
- ➤ Final Design (2017 2018)
- ➤ Construction (2018 2019)

27

Discussions / Questions

