Monroe Street Reconstruction
Cross Section Workshop
September 29, 2016
Introductions

- Urban Assets
- City Staff
 - Engineering
 - Traffic Engineering
 - Planning
 - Metro
- Engagement Resource Team
 - Alder Eskrich
 - DMNA and VNA
 - Madison Bikes
 - Monroe Street Merchants Assoc.
 - UW-Madison
 - Friends of Lake Wingra
 - Wingra School
 - Edgewood College
Thank you to Wingra School!

1. Community Input Summary
2. Workshop Orientation
3. Cross Section Design Exercise
4. Group Report-Out
5. Next Steps & Dot Voting
Planning Process
Monroe Street Planning Process

- Business Focus Group (27 participants)
- Pedestrian, Bike & Transit Infrastructure World Café (58 participants)
- Green Infrastructure World Café (30+ participants)
- Cross Section Workshop

2016

- Business Community Priorities
- Pedestrian/Bike/Transit Priorities
- Green Infrastructure Priorities

Preferred Cross Sections

2017

- Streetscape, Green Infrastructure, and Placemaking Workshops

Final Design and Construction Plans

- City of Madison traffic modeling and engineering analysis
- City of Madison engineering and urban design

Monroe Street Reconstruction Community Survey (2,779 responses)
Community Survey Results
Community Survey Results

- 2,779 responses!
- 63% aged 31-60
- 47% live in a neighborhood other than Vilas or Dudgeon-Monroe
- 33% live within three blocks of Monroe Street
- Respondents include high school and college students, neighborhood residents, visitors, commuters, business owners, parents, etc.
What three words would you use to describe Monroe Street to a visitor?
What qualities would you most like to see improved or invested in?

1. 54%: Walkability
2. 46%: Green Street with more plant life and sustainable design
3. 43%: Bikeability
4. 42%: Comfortable commuting route
5. 40%: Vibrancy of the commercial districts
What is most important to achieve as a result of the Monroe Street reconstruction?

1. 70%: Better pedestrian-friendliness and safety
2. 65%: A reconstructed street, free of cracks and potholes
3. 51%: Better bike-friendliness and safety
4. 46%: A “greener” approach to stormwater management
5. 42%: Slower vehicular traffic
Community Priorities
Community Priorities

- Improve walkability and pedestrian safety, especially at intersections.
- Create a destination street that is convenient and safe for all modes of transportation.
- Reduce traffic speeds.
- Maintain or improve existing parking.
- Ensure predictability in Metro service to improve access for all users.
- Introduce streetscape improvements and more inviting plant life to enhance the pedestrian experience and natural environment.
Community Priorities

- Improve bicycle access by creating safe connections to adjacent paths and increasing bike parking.
- Maintain a comfortable route for commuters, including those accessing adjacent businesses, schools, and institutions.
- Enhance Monroe Street’s commercial vibrancy and unique sense of place while retaining its neighborhood feel.
- Be a model of innovation and look for demonstration opportunities to educate the public about sustainability.
Cross Section Workshop

Jim Wolfe, Project Engineer
Project Scope

Full Reconstruction

Pavement/Utilities Replacement

MONROE STREET

Regent

Odana

Gregory

Lake Wingra

Leonard
What’s Been Discussed

- Business Enhancements
- Pedestrian & Bike Improvements
- Green Infrastructure
- Some opportunities in all areas impacted by cross section
Existing Condition

- Right-of-way width: 66’
- Typical street width: 42’
- Typical sidewalk: 6’
 - Includes maintenance buffer
- Typical terrace width: 6’
- Lane configuration:
 - One thru lane each direction at centerline
 - Shared parking & peak hour lane at curb
Existing Condition

42 FT. EXISTING CROSS SECTION

PL. CONC. SIDEWALK GRASS TERRACE PARKING & PEAK HOUR LANE TRAVEL LANE TRAVEL LANE PARKING & PEAK HOUR LANE GRASS TERRACE CONC. SIDEWALK
Existing Condition

Pros
- 2 travel lanes in peak hours to lessen congestion
 - Affects safety, traffic on neighborhood streets, etc.
- Parking on both sides most of the day & evening and near to intersections
- Bus stops out of main travel lane
 - Peak hour lanes help bus schedules
- Narrower than standard lanes
 - Some traffic calming, and wider terraces

Cons
- No on street bike lanes
- Loss of parking for 1.5 hours each side
- No bump-outs at intersections to shorten crossings
- Limited terrace space
If Monroe St. was a new street in an undeveloped area...
If Monroe St. was a new street in an undeveloped area…
Monroe Street doesn’t fit neatly into any of these categories. Monroe’s curb-to-curb width ranges from 42-46 feet, with an average daily traffic (ADT) volume of 16,000-20,000 cars.
• Right-of-way remains the same: 66'
 • No land purchases

• Sidewalk remains in place on both sides
 • Minimum width 5’ with 1’ buffer to P.L.
 • 54 ft. of space between sidewalks

• Lanes must be provided at intersections for thru traffic in both directions & turning vehicles (32 ft min)
• Guidance on minimum lane widths
 • Travel lane at centerline – 10 ft. min, typical 11 ft.
 • Travel lane at curb line – 11 ft. min, typical 12 ft.
 • Turn lane – 10 ft.
 • Bike lane – 6 ft.
• Dedicated Parking lane – 8 ft.
• Terrace options
 • Keep existing trees – 6 ft.
 • Remove existing trees, plant low-growing – 4 ft.
 • No trees < 4 ft.
 • Rain gardens – 10 ft. X 15 ft.
 • Max bump-outs – 2 ft. on both sides
Workshop: Other Considerations

- Not all details need to be considered on this section
- As discussed at previous meetings, pedestrian, bike, and green infrastructure improvements will still be included with project
 - Crosswalk enhancements
 - Bike path connection improvements
 - Side street rain gardens
 - Stormwater treatment structures
Workshop: Sample Cross Sections

- 11’ Thru lane in each direction
- Parking lane both sides
- Turn lanes at intersections (no parking)
- No peak hour travel lane
 - Allows for bump-outs
Pros
- Parking on both sides of street throughout the day
- Allows for small bump-outs at intersections
- Wider terrace space for trees, amenities, etc.
- Potential for mid-block stormwater treatment in terraces (lose parking to do so)

Cons
- Increased congestion during peak hours
 - All buses stop within travel lane, block traffic
 - Congestion affects bus schedules
- No bike lanes
- No parking within 130’+/- of intersections
 - Loss of approximately 6 parking stalls on each leg
 - Could be most of blocks depending on block length
Workshop: Sample Cross Sections

- Thru lane in each direction
- Parking lane one side (could be either side)
- Turn lanes at intersections (no parking)
- Bike lanes in both directions
Workshop: Sample Cross Sections

- **Pros**
 - Dedicated bike lanes on both sides
 - Wider terrace space for trees, amenities, etc.

- **Cons**
 - Increased congestion during peak hours
 - Parking on only one side at all times
 - No parking within 130’+/− of intersections
 - Could be most of blocks depending on block length
 - Approximately 6 stalls at each corner (24 total)
 - Bus stops in travel lanes
 - Bus times affect be peak hour congestion
Workshop: Sample Cross Sections

- Thru lane in each direction
- Parking lane one side
- Two-way Left Turn Lane (TWLTL) throughout
- Half bump-out at intersections (no parking)
Workshop: Sample Cross Sections

• **Pros**
 • Improved mid-block safety with dedicated turn space for driveways
 • Narrower street width
 • Wider terrace space for trees, amenities, etc.
 • Shortens pedestrian crossings
 • Allows for parking space up to intersections
 • Option for small bumpouts at intersections

• **Cons**
 • Increased congestion during peak hours
 • Bus stops in travel lanes & affects on timing
 • No bike lanes
 • Parking only on one side of the street
Workshop: Site Constraints

- A number of possible combinations remain
- Right-of-way remains the same: 66’
- Sidewalk remains in place on both sides
 - Minimum width 5’ with 1’ buffer to property line
- Minimum 3 lanes through intersections (32 ft.)
- Space to be considered (sidewalk to sidewalk) for lanes & terraces (grass/trees) is 54 ft.
• Inside travel lane – 10 ft. min
• Travel lane at curb line – 11 ft. min
• Turn lane – 10 ft. (at intersections)
• Bike lane – 6 ft.
• Dedicated Parking lane – 8 ft.
• Terrace options
 • Keep existing trees – min. 6 ft.
 • Remove existing trees, plant low-growing – 4 ft.
 • No trees in terraces < 4 ft.
 • Rain gardens – 10 ft. X 15 ft.
 • Max curb bumpout – 2 ft. (on either side)
• Traffic island – 4 ft.
Questions?
Workshop Exercise
Small Group Cross Section Modeling
• Put on your engineering hat.
• 30 minutes for group work
 • Several resources
• 30 minutes to share
 • Use your “Outcomes” sheet to tell your story
• Dot-voting for favorites at the end of the meeting
• Focus **broadly** on defining spaces for different uses.
 • Pieces represent **minimum** widths – can go wider.
• Connect your design to the community priorities.
• Experiment, be creative, and take on the challenge!
Ground Rules

✓ Be open to new ideas.
✓ Practice mutual respect.
✓ Challenge yourself and others.
✓ Contribute your thoughts and experience.
✓ Listen to understand. Do not judge or criticize.
In 2 minutes:

1. Describe your group’s cross section.

2. Sell it! Identify the benefits your group envisions and how it meets community priorities.

3. Explain the tradeoffs your group accepted with this design.
Next Steps
Next Steps

1. Traffic modeling
2. Final cross section design
3. Cross Section Open House
 - October 27, Edgewood College, 6-7:30PM
For More Information:

- Survey results are posted online.
- City of Madison Engineering: www.cityofmadison.com/engineering/projects/monroe-street
 - Subscribe to email updates.
 - View presentations and notes.
- Alder Eskrich, District 13: www.cityofmadison.com/council/district13/
 - Subscribe to email updates.
 - Share additional comments.
Thank You!

Source: http://www.monroestreetmadison.com/