Report on

Monona Grove High School

Traffic Impact Study

December 1997

Monona Grove High School

TABLE OF CONTENTS

SECTION ES -EXECUTIVE SUMMARYPage No.ES. 01 Introduction ES-1
ES. 02 Purpose of Report ES-1
ES. 03 Analysis ES-2
ES. 04 Recommendations ES-3 ES-3
ES. 05 Implementation ES-4
SECTION 1 - INTRODUCTION
1.01 Project Description and Location 1-1
1.02 Purpose of Report 1-2 1-2
SECTION 2 - EXISTING CONDITIÓNS *
2.01 Geometry and Layout 2-1
2.02 Traffic Volumes
2.02 Traffic Volumes 2-3 2-3
2.03 Service Levels 2-4 2-4
2.04 Crash History 2-7
SECTION 3 - TRAFFIC IMPACTANALYSIS
3.01 Projected Trips with Revised School Road Network 3-1
SECTION 4 ALSERNATIVES
4-1
4.00 Alternatives
4-1
4-1
4.01 Alternałtive 4-2
4.03 Alternative C 4-3
SECTION 5 - ALTERNATIVE ANALYSIS
5.01 Alternative A 5-1
5.02 Alternative B 5-1
5.03 Alternative C 5-3
5.04 Summary 5-4
5.05 Discussion 5-5
SECTION 6 - RECOMMENDATIONS
6.01 Discussion 6-1
6.02 Implementation 6-1

TABLE OF CONTENTS (Continued)

APPENDICES

APPENDIX A - Traffic Data
APPENDIX B - Trip Generation and Distribution
APPENDIX C - Traffic Analysis

LIST OF TABLES

ES. 01 INTRODUCTION

The Monona Grove School District is proposing to build a new high school building at the current high school site located on Monona Drive. The school currently enrolls 750 students and the proposed project will increase their capacity by 250 students. With the construction of this building, several facility changes will also occur including additional parking, revised site access, a new swimming pool, and a new auditorium. Figure ES.01-1 shows the general study location. School construction will likely take two and one half years, with completion anticipated in the fall of 2000.

ES. 02 PURPOSE OF THE This study considers traffic operation and pedestrian accommodations with several configurations. purpose of this report is

\qquad

Figure ES.01-1 Project Location to evaluate potential
benefits and drawbacks associated with each configuration and make a recommendation as to which configuration best meets the schools needs. The focus of the study evaluates the Lofty/Monona Drive intersection, the Cold Spring Avenue/Monona Drive intersection, and the proposed school site layout. Proposed alternative layouts include providing access to the site from either the Lofty Avenue/Monona Drive intersection, the Cold Spring Avenue/Monona Drive intersection, or both. Proposed alternative traffic control strategies include either continued stop sign control of Cold Spring Avenue and Lofty Avenue or a traffic signal at either of these locations.

ES. 03 ANALYSIS

A. Motor vehicles

According to the Institute of Transportation Engineers Trip Generation Manual, the school itself generates 1,200 vehicles per day when school is in session. During the evening peak hour, less than 38 percent of school traffic uses the Cold Spring/Monona Drive intersection. At least 62 percent of the evening peak hour traffic from the school exits via Jerome Street to the north or via Cold Spring Avenue to the east.

This study analyzed intersection operational characteristics for weekday A.M. and P.M. peak hours. According to the analysis, left turns from Cold Spring Avenue and Lofty Avenue on to Monona Drive currently experience excessive delays during the A.M. and P.M. peak hours. These delays may exceed two minutes. Frustration caused by these long delays in some instances cause drivers to make turning maneuvers with traffic gaps that they would ordinarily find unacceptable.

The Manual on Uniform Traffic Control Devices publishes ouidelize criteria for determining the need for traffic signals. These criteria are called warrants and, there are 14 different "warrants" that justify intersection signalization. Warraht analyses were performed for the Monona Drive/Cold Spring Avenue and Monona Drive/Lofty Avenue intersections. Evaluation of the Monona Drive/Cold Spring intersection/ndicates that this intersection currently meets warrant 4, School Crossings, and wadrant 11, Peak Hour Volume. Evaluation of the Monona Drive/Lofty Avenue-intersection indicates that this intersection currently meets warrant 4, School Crossings. If all access to the school is via the Lofty Avenue intersection, this intersection would also meet warkant 11 , Peak Hour Volume.

It is likely that with petter access to Monona Drive via a traffic signal, more traffic would use Monona Drive to accers the school site. Currently at least 62 percent of traffic exiting the school in the pm peak hour avoids Monona Drive by using local streets such as Jerome Street and Cold Spring Avenue to the east. With the additional traffic attracted to Monona Drive due to the convenience of traffic signals, signal warrants would likely be exceeded to a greater degree than current traffic volumes indicate.

B. Pedestrians

The minimum recommended traffic gap for a pedestrian to cross Monona Drive is 15 seconds. To determine the number of crossing opportunities for pedestrians a gap study was performed. Between 3 P.M. and 4 P.M., there were 6 gaps of 15 or more seconds. Between 3:30 P.M. and 3:45 P.M., there was one gap of 15 or more seconds. The Monona Grove High Schooi class day ends at 3:27 P.M., therefore, there was only one gap of adequate length during the
afternoon rush as students left school. Currently, many students cross Monona Drive while there are insufficient gaps. Observation of this peak pedestrian period found that as students crossed Monona Drive, much of the traffic on Monona Drive slowed and yielded to the pedestrians in the marked crosswalks. Therefore, while there may be only one gap of recommended length for pedestrians crossing during this peak period, pedestrians are creating more opportunities by forcing Monona Drive traffic to yield.

C. Crash History

For the three-year period from 1994 through 1996, there were eight reported crashes at the Monona Drive/Cold Spring Avenue intersection. Eight crashes within a three-year period is not unusual for an intersection carrying these traffic volumes and does not in itself warrant signalization. For the three-year period from 1994 through 1996, there were four reported crashes at the Monona Drive/Lofty Avenue intersection. Again, four crashes is not unusual for an intersection carrying these traffic volumes and does not in itself warrant signalization.

ES. 04 RECOMMENDATIONS

 σ

The recommended option should address to the greatest extent the traffic and pedestrian operational objectives. These objectives are:

- Facilitate passenger car travel to and from the school site.
- Accommodate gus tavel to, from, and within the site.
- Provide convenient and safe pedestrian routes to and from the site.

Locating all vehicular access onto Cold Spring Avenue and installing a traffic signal at the Cold Spring Avenue/Monoha Avenue best addresses these objectives. Passenger car travel to and from the site will be convenient and predictable. Bus travel similarly benefits from the installation of a traffic signal on Monona Drive. Pedestrians are provided more substantial gaps at the Lofty Avenue intersection without the added potential for crashes from vehicular access to the school site at Lofty Avenue. Pedestrians are also provided a signalized intersection at which to cross Monona Drive if they so choose. Traffic on Monona Drive is delayed only slightly, and through appropriate signal timing, speeds between Dean Avenue and Cold Spring Avenue can be better controlled. Neighborhood residents will benefit from better access to Monona Drive due to the traffic signal, and less non neighborhood cut through traffic which previously used local streets to avoid delays at Monona Drive.

ES. 05 IMPLEMENTATION

The county is planning to rebuild Monona Drive in approximately seven years. The most cost effective strategy for installing a traffic signal at Monona Drive and Cold Spring Avenue would be to coordinate signal installation with this construction work. In the interim, traffic patterns should remain similar to those today, with slightly greater delays due to the increased traffic to the site. With the additional parking and building amenities, there is greater justification for traffic signals once the new school is completed.

SECTION 1

INTRODUCTION

1.01 PROJECT DESCRIPTION AND LOCATION

The Monona Grove School District is proposing to build a new high school building at the current high school site located on Monona Drive. The school currently enrolls 750 students and the proposed project will increase their capacity by 250 students. The project is located in the City of Monona at the intersection of Monona Drive and Cold Spring Avenue. With the construction of this building, several facility changes will also occur including additional parking, revised site access, a new swimming pool, and a new auditorium. Figure 1.01-1 shows the general study location. Approximately 227,000 square feet of floor area is anticipated-for the new building. Land use surrounding the development locations consists of residential housing north and west of the school, and commercial development

Figure 1.01-1 Project Location south and east of the school.

Monona Drive will serve as the primary access for the school via Lofty Avenue and/or Cold Spring Avenue.

The school construction will likely take two and one half years, with completion anticipated in the fall of 2000 . Figure $1.01-2$ shows the existing site layout of the site, and existing access locations.

1.02 PURPOSE OF THE REPORT

This study will consider traffic operation and pedestrian accommodations with several site configurations. The purpose of this report is to evaluate potential benefits and drawbacks associated with each configuration and make a recommendation as to which configuration best meets the schools needs.

To perform analysis, this study performed several activities, including:

- Inventorying the existing geometry, traffic volumes, and pedestrian volumes in and around the school.
- Determining the existing level of service for traffic and pedestrians at the intersections of Monona Drive/ Cold Spring Avenue, and Monona Drive/Lofty Avenue.
- Determining the future pedestrian and vehicular traffic and traffic needs in the vicinity of the school.
- Formulating alternatives to address the vehicular and pedestrian needs in the school vicinity.
- Evaluating the alternatives as to how they address the pedestrian and vehicular needs of the school.
- Evaluating current parking capacity and future parking needs.
- Selecting an alternative which best addresses the needs of Monona Grove High School.

The focus of the study evaluates the Lofty/Monona Drive intersection, the Cold Spring Avenue intersection, and the proposed school site layout.

SECTION 2
EXISTING CONDITIONS

2.01 GEOMETRY AND LAYOUT

A. Roadways

Monona Drive serves as an arterial transporting road users from the Beltline to Atwood Avenue and other points in Madison. This four-lane undivided roadway incorporates 44 feet of traveling surface with 2.5 -foot gutters. Average Daily Traffic (1996) on Monona Drive is 26,600 vehicles per day (vpd). ${ }^{1}$ There are sidewalks on both sides of Monona Drive south of Cold Spring Avenue and on the west side north of Cold Spring Avenue. South of the Monona Grove High School, Monona Drive is commercially oriented with strip malls and service station- ${ }^{\star}$ like establishments. In front of and north of the high-school, Monona Drive has residential housing lining its frontage.

Cold Spring Avenue is a two-lane undiyided road which intersects with Mononal Drive. Cold Spring Avenue is 34 feet wide west of Monona Drive and-39feet wide east of Monona/Drive. Adjacent land uses on Cold Spring Avenue are primarily fesidentiak Average Baily Traffic on Cold Spring Avenue in the area investigated is about 1 , Too ypd. ${ }^{2}$ There is sidewalk on the south side of Cold Spring Avenue east of Mondna Brive. Cold Spring Avenue is predominantly a residential street.

Lofty Avenue is a two-lane undivided road which intersects Monona Drive from the west. Lofty Avenue is 34 feet wide. Adjacent land uses on Lofty Avenue are primarily residential. Average Daily Traffic on Lofty Avenue in the area investigated is about 550 vpd. ${ }^{3}$ There are no sidewalks on Lofty Avenue. Lofty Avenue is predominantly a residential street.

1	From WisDOT Wisconsin Highway Traffic Volume Data.
2	Based on traffic counts taken 11/19/97-11/20/97.
3	Based on traffic counts taken 11/19/97-11/20/97.

 measured from a "seeing" height of $3.75 \mathrm{ft}(1.15 \mathrm{~m})$ to an object height of $3.75 \mathrm{ft}(1.15 \mathrm{~m})$.

Intersection sight distance. Intersections should be planned and located to provide as much sight distance as possible. In achieving a safe highway design, as a minimum, there should be sufficient sight distance for the driver on the minor highway to cross the major highway without requiring approaching traffic to reduce speed. Minimums for different design speeds are shown in Table 19-8. Stop con-
are based on different assumptions which result in lower sped. No-passing zones are based on than the design speed.

Sight distance adequate for d sing shend be provided frequently in design of two-la highways, and each passing section should be as long ad 1 alible. Although the frequency and lengths of such passing sections depend on physical and cost considerations and annot be replaced to standard, the importance of providing passing opportunities on as much overemphasized. The percentage as as popple cannot be passing can take plage affects not only ghway where the safety, comfort, and convenie ne of capacity, but also For purposes of design, paspros sight highway users. horizontal and vertical restictons is measured from a "seeing" height of $3.5 \mathrm{ft}(1.05 \mathrm{~m})$ to an object height of $4.25 \mathrm{ft}(1.3 \mathrm{~m})$. For purposes of marking pavement, it is
ph ier
$r e p o r t$
$+$
claims
$345 \cdot 50$ Figure 19.2.

TABLE 19-8 $\overrightarrow{7}$ should yeld. design spot. Suggested Corner Sight Distance at Intersections*

	Suggested Corner Sight Distance at Intersections*							Design speed mph (k nh)
$20(32)$	$30(48)$	$40(64)$	$50(80)$	$60(97)$				
	Minimum corner intersection sight distance* ft (m)							
$200(61)$	$300(91)$	$400(122)$	$500(152)$	$600(183)$				

*Corner sight distance measured from a point of the minor road at least $15 \mathrm{ft}(4.6$ $\mathrm{m})$ from the edge of the major road pavement and measured from a height of eye of $3.5 \mathrm{ft}(1.05 \mathrm{~m})$ on the minor road to a height of object of $4.25 \mathrm{ft}(1.3 \mathrm{~m})$ on the
major road.
troll are assumed; other forms of traffic control have different intersection sight distance requirements.

Procedures for checking plans. It is often desirable during the preliminary design stage to determine graphically the sight distances and record them at frequent intervals. Methods for scaling sight distances and a typical sight distance record which should be shown on final plans are shown in Figure 19.2. For two-lane highways, passing sight disstance, in addition to stopping sight distance, should be shown.

Horizontal sight distance on the inside of curves may be limited by obstructions such as buildings, plant growth, or cut slope. Horizontal sight distance is measured along a straight edge, as indicated in the upper left in Figure 19.2.

B. Intersections

The most northerly intersection in the study area is the Monona Drive/Cold Spring Avenue intersection. Monona Drive runs north south while Cold Spring Avenue runs east west. The Monona Drive/Cold Spring Avenue intersection is unsignalized with north-south Monona Drive traffic having through right-of-way and Cold Spring Avenue having stop control. Sight distance at this intersection to the north is more than adequate; however, sight distance to the south is only 345 feet. This sight distance corresponds to a safe traveling spend of 27 mph for northbound Monona Drive vehicles. The posted speed limit for northbound Monona Drivevehicles, however, is 40 mph . Therefore, northbound Monona Drive vehicles must slow down for westbound Cold Spring vehicles turning right or eastbound Cold Spring vehicles turning left onto Monona Drive. Although this intersection sight distance is less than desirable, a review of the intersection's crash history from 1994 to 1996 does not show a crash associated with sight distance. Therefore, the crash history suggests that this less than desirable sight distance does not pose a significant safety problem.

The intersection of Monona Drive with Lofty Avenue is located directly south of Cold Spring Avenue. This intersection is also unsignalized with Lofty Avenue having stop control and Monona Drive having the through right-of-way. At present, this intersection is three way, with Lofty Avenue ending at Monona Drive. As part of the proposed school access plan, the existing school driveway located between Lofty Avenue and Cold Spring Avenue may be relocated to the east side of this intersection. Sight distance at this intersection is greater than 1,000 feet in both directions, which is more than adequate for the speeds on Mono Drive.

The Monona Drive/West Pean Avenuéintersection is a signalized intersection 900 feet south of Monona Grove High School. This intersection is not technically within the study area. Signal timing associated with this intersection, however, influences vehicular and pedestrian traffic entering and exiting the high school. Therefore, this intersection is considered in some portions of the report.

C. Site

The existing school layout has four access points (driveways). One driveway lies on Monona Drive between Cold Spring Ave and Lofty Avenue and forms a " U " with a driveway on Cold Spring Avenue. This driveway combination is used primarily for drop-off traffic and buses. The third and forth driveways are also located on Cold Spring Avenue and serve as the entrance to majority of the school's parking. This driveway is used both for drop-off traffic and for vehicles using the school's 182 parking spaces.

D. Pedestrian Accommodations

Monona Drive has sidewalks on both sides of Monona Drive south of Cold Spring Avenue and on the west side of Monona Drive north of Cold Spring Avenue. Additionally, there is sidewalk on the south side of Cold Spring Avenue to the east of Monona Drive. Special "zebra" stripe crosswalks crossing Monona Drive are located at Cold Spring Avenue, Lofty Avenue, and between Lofty Avenue and Dean Avenue. At the Dean Avenue signal there ars pedestrian signal heads and push buttons.

2.02 TRAFFIC VOLUMES

A. Motor vehicles

Currently traffic volumes on Monona Brive Tange from 25,400 to 38,700 vehicles per day. Traffic volumes on Cold Spring Ave are $1 / 100$ vehicles per day and volumes on Lofty Avenue are 550 vehicles per day ${ }^{4}$. According to the Institute of Transportation Engineers Trip Generation Manual, the school itself generates 1,200 vehicles per day when school is in session. During the evening peak hour, less than (38 perdent of school traffic uses the Cold Spring/Monona Drive intersection. At least 62 pereent of the evening peak hour traffic from the school exits via Jerome Street to the north or via Cold Spring Avenue to the east. Parking for the school facility is accommodated by the 182 parking spaces on the site and along adjacent side streets. Approximately 50 vehicies a day park on side streets adjacent to the site when school is in session.
For this study, turning volumes were also recorded for the Cold Spring Avenue/Monona Drive intersection and the Ldfty Avenue/Monona Drive intersection. The predominant turning movements at the Cold Spring Avenue/Monona Drive intersection are north bound right turns and west bound left turns. Even with modest volumes, traffic queues of eight or more vehicles waiting to turn opto Monona Drive are common on Cold Spring Avenue. Turning movements at the Lofty Avenue/Monona Drive intersection are minor, with no more than 10 vehicles per hour making any one turning movement. This indicates that much of the traffic at these intersections is oriented towards the south, and that many drivers chose to avoid Monona Drive by using Cold Spring Avenue to the east and Jerome Street to the north.

No counts were taken during special events such as concerts, football and basketball games. It is estimated that these types of events can generate from 500 to 750 trips, depending on

[^0]how large an audience attends. For larger events, traffic control on Monona Drive is managed by a police officer.

B. Pedestrian/Bicyclist

From counts taken in November and December 1997, approximately 70 pedestrian cross Monona Drive in the vicinity of the school in the morning and afternoon. The majority of these pedestrians are students whose origin and destination is their cars parked in the neighborhood west of the school. There are no official bicycle counts for the study area; however, it is estimated that between 5 and 10 students ride their bicycles to school during favorable weather.

2.03 SERVICE LEVELS

A. Motor Vehicles

The operation of a roadway (e.g., congestiontevels) is typically described as "Level of Service" (LOS). The LOS rating system describes the (traffie flow conditions of a roadway or intersection and ranges from A (free-flow conditions) to \mathcal{F} (over capacity).

For intersections, LOS is determined by the average delay (in seconds) of all vehicles entering the intersection. The average delay is based on the peak 15 -minute period of the peak hour being analyzed. Since this delay is an arenage value, some vehicles will experience substantially greater-delay, and some will expefience less delay than the average value. Intersections, with shert average delays have high Levels of Service; conversely, intersections with long ayerage delays haye love Levels of Service. LOS E is considered to be the limit of acceptable delay. A LOS of F for the total intersection is considered to be an indication of the need for improkement.

LOS characteristics are different for signalized and unsignalized intersections. The primary reason for this is that drivers anticipate longer delays at signalized intersections which carry large amounts of traffic. However, drivers generally feel unsignalized intersections should have-less delay. Additionally, several driver-behavior considerations combine to make delays at unsignalized intersections less desirable than at signalized intersections. For example, drivers at unsignalized intersections are able to relax during the red interval, whereas drivers on the minor approaches to unsignalized intersections must remain attentive in order to identify acceptable gaps for entry. Typically, LOS is only calculated for the legs of an unsignalized intersection that have stop control. The following table describes Level of Service characteristics for both signalized and unsignalized intersections.

Describes intersections with very low levels of delay that average less than 5 seconds per vehicle. This condition occurs with extremely favorable signal progression and most vehicles arrive on the green phase of the signal.

Describes intersections with low levels of delay that are more than 5 seconds yet less than 15 seconds per vehicle. This condition generally occurs with short cycle lengths and/or good signal progression.

Describes intersections with average delays ranging from 15 to 25 seconds per vehicle. Individual
C cycle failures (waiting through more than one cycie) may appear at this Level of Service. The number of vehicles stopping is also substantial at this Level of Service.

Describes intersections with average delays ranging from 25 to 40 seconds per vehicle. The influence
D of congestion becomes more noticeable. This Level of Service may result from long cycle lengths, unfavorable progression and/or high vehicle to capacity ratios. Many vehictes stop and the proportion of non-stopping veficles declines. Individual cycle failures are noticeable.
Describes intersections quith average delays ranging from 40 to 60 seconds per vehicle. Individual
E cycle failures are frequent occurrences. This level Gf seryice is considered by most agencies to be the limit of acceptable delay.

Describes intersections with average delays that are moke than 60 seconds per vehicle. This level of
F service, considered to be unacceptable by most drivers, often occurs with over saturation. The number of vehicles entering the intersection exceeds the intersection's capacity.

Unsignalized Intersections

Describes intersections with very low levels of delay that average less than 5 seconds per vehicle.

Describes intersections with low levels of delay that are more than 5 seconds yet less than 10 seconds per vehicle.

Describes intersections with average delays ranging from 10 to 20 seconds per vehicle.

Describes intersections with average delays, ranging from 20 to 30 seconds per vehicle. The influence of cdngestion becomes more noticeable

Describes intersections with average delays ranging from 30 to 45 seconds per vehicle.

Describes intersections with average delays that are more than 45 seconds per vehicle. LOS F exists where there are insufficient gaps of suitable size to allow a side street demand to cross safely though a major street traffic stream. This LOS is usually evident from extremely long total delays experienced by side street traffic and queuing on the minor approaches.

Source: 1994 Highway Capacity Manual

Table 2.03-1 Operational Characteristics Associated with LOS Ratings

Most roadways typically have two peak-hour periods, one being the morning rush hour and the other being the evening rush hour. This study analyzed intersection operational characteristics for weekday A.M. and P.M. peak hours. Operation was analyzed using Highway Capacity Manual Software for the unsignalized intersections and Signal 94 (possible future) for signalized intersections. The Highway Capacity Manual Software calculates the LOS for yielding movements at stop-controlled intersections. Signal 94 uses the Highway Capacity Manual methods for determining operation levels at signalized intersections. Signal 94 also has the ability to optimize signal phasing and timing.

According to the analysis, left turns from Cold Spring Avenue and Lofty Avenue on to Monona Drive currently operate at LOS F during the A.M. and P.M. peak hours. The analyses also indicate that delays for these left-turning vehicles can be extremely long, in some instances exceeding two minutes. Frustration caused by these long delays in some instances cause drivers to make turning maneuvers with traffic gaps that they would ordinarily find unacceptable.
The Manual on Uniform Traffic Control Devices publishes guideline criteria for determining the need for traffic signals. These criteria are called warkants and there are 14 different "warrants" that justify intersection signalization. These warrants, although giving justification for a traffic signal, do not require that a traffic signal be installed. Warrant analyses were performed for the Monona Drive/Cold Spring Avencye and Monona Drive/Lofty Avenue intersections. Evaluation of the Monona Drive/Cold Spking intersection indicates that this intersection currently meets wararnt 4, SchoolCrossings, and warrant 11, Peak Hour Volume. Evaluation of the Monona Drive/Lofty Avenue iftersection indicates that this intersection currently meet's warfant 4 , School Crossings.- It is likely that with better access to Monona Drive via a traffic signal, more traffic would use this access. Currently at least 62 percent of traffic exitingthe school in the pm peak hour avoid Monona Drive by using local streets such as Jerome St. and Cold Spring Avenue to the east. With the additional traffic attracted to Monona Drive due to the Convenience of a traffic signals, signal warrants would be met or exceeded to a greater-degree than current traffic volumes indicate.

B. Pedestrians

The minimum recommended traffic gap for a pedestrian to cross Monona Drive is 15 seconds. To determine the number of crossing opportunities for pedestrians a gap study was performed. Between 3 P.M. and 4 P.M., there were 6 gaps of 15 or more seconds. Between 3:30 P.M. and 3:45 P.M., there was one gap of 15 or more seconds. The Monona Grove High School class day ends at 3:27 P.M., therefore, there was only one gap of adequate length during the afternoon rush as students left school. Currently, many students cross Monona Drive while there are insufficient gaps. Observation of this peak pedestrian period found that as students crossed Monona Drive, much of the traffic on Monona Drive slowed and yielded to the
pedestrians in the marked crosswalks. Therefore, while there may be only one gap sufficient for pedestrian crossing during this peak period, pedestrians are creating more opportunities by forcing Monona Drive traffic to yield.

2.04 CRASH HISTORY

A. Monona Drive and Cold Spring Avenue

For the three-year period from 1994 through 1996, there were eight reported crashes at the Monona Drive/Cold Spring Avenue intersection. Five of these crashes involved Cold Spring vehicles turning left onto or crossing Monona Drive. One of these crashes involved a rear-end crash on Monona Drive, one crash involved a Monona Drive vehicle turning left onto Cold Spring Drive, and the other crash involved a crash with a parked car on Monona Drive. Eight crashes within a three-year periad is not unusual for an infersection carrying these traffic volumes and does not in itself warrant signálization.

B. Monona Drive and Lofty Avenue

For the three-year period from 1994 through 1996, there were four reported crashes at the Monona Drive/Lofty Avenue intersection; wo were reartend crashes on Monona Drive, one involved a pedestrian, and one involced a parked car. Again, four crashes is not unusual for an intersection carfying thesetraffic volumes and does not in itself warrant signalization.

SECTION 3

TRAFFIC IMPACT ANALYSIS

3.01 PROJECTED TRIPS WITH REVISED SCHOOL ROAD NETWORK

Currently the Monona Grove High School enrolls 750 students, which generates approximately 1,200 trips. With the proposed project, the school's capacity will be increased by 250 students, which will increase the number of trips generated by the school by 400. About 50 school-related vehicles also park on adjacent side streets. With the increased on-site parking that will be provided by the project, these vehicles will now enter and exit the high school facility, increasing trips entering and exiting the facility. This shift in parking location may also decrease the number of pedestrians who cross Monona Drive to get to their parked vehicles.

Additionally, the proposed school internal road network may change traffic patterns near the school. Depending on the site layout selected, vehicles may enter and exit on Cold Spring Avenue only, or on a combination of Monona Drive and Cold Spring. The internal layout will affect traffic distribution to the Cold Spring Road and Lofty Avenue intersections, which will in turn affect the traffic operation of these intersections. The traffic distribution associated with the various alternatives is discussed more fully in Seftion 4 of this report.

4.0 ALTERNATIVES

Alternatives for the site must address passenger car, bus, and pedestrian traffic, and access. Therefore, each alternative should:

- Facilitate passenger car travel to and from the school site.
- Accommodate bus travel to, from, and within the site.
- Provide convenient and safe pedestrian routes to and from the site.

To address these objectives, three main alternatives (each with two or three sub-alternatives) were formulated. Each alternative uses different access configurations, site layout configuration, and/or signalization scenarios to accomplish the above stated objectives. The following paragraphs summarize the characteristics of each alternative.

4.01 ALTERNATIVE A

A. Alternative A1

Alternative A1 arranges the school layout so that the only school entrance and exit is a driveway at the Lofty Avenue intersection. Passenger vehicles and buses with use this driveway to enter and exit the site to drop off students, and to use the school site's parking. All driveways on Cold Spring Avenue would be eliminated as well as the existing school entrance on Monona Drive. Pedestrian crosswalks

Figure 4.01-1 Alternative A1 and A2 would remain at Cold
Spring Avenue and Lofty Avenue. Sidewalks within the school site will direct pedestrians to the crossing at this intersection. This will focus all of the site traffic to this intersection.

B. Alternative A2

Alternative A2 is identical to Alternative A1 with the exception that Lofty Avenue is signalized. The access driveways along Cold Spring Avenue are eliminated. This will focus all of the site traffic to the Lofty Avenue intersection. All traffic will enter and exit the site at Lofty Avenue. Stop signs will remain at Cold Spring Avenue. Crosswalks will remain at their current locations at Lofty Avenue and Cold Spring Avenue.

4.02 ALTERNATIVE B

A. Alternative B1

Alternative B1 provides access to the site at both Lofty Avenue and Cold Spring Avenue. The driveway at Lofty Avenue and Monona Drive would serve only as an entrance, primarily for passenger cars. There would be two driveways onto Cold Spring Avenue. These driveways would serve as entrances and exits-for both passenger cars-and buses. Stop signs witk remain at Cold Spring Avenue and Lofty Avenue. The Cold Spring Ayenue tintersection will serve as the focus for vehicles exiting the school site. Crosswalks will remain at their current locations at Lofty Avenue and Cold Spring Avenue and internal sidewalks will focus pedestrian traffic to the Lofty Avenue intersection.

B. Alternative B2

Alternative B2 is identical to Alternative B1 with the exception that Cold Spring Avenue is signalized. Due to this signalization, it is expected that more traffic will choose to use the Cold Spring Avenue driveways to enter and exit the school site. The signal at Cold Spring Avenue will be coordinated with the signal at West Dean Avenue to provide gaps in Monona Drive's traffic stream. These gaps will provide more opportunities for pedestrians to conveniently cross Monona Drive. Crosswalks will remain at their current locations at Lofty Avenue and Cold Spring Avenue and the internal sidewalks would continue to encourage pedestrian crossings at the Lofty Avenue intersection. The signalized Cold Spring intersection, however,
would also have pedestrian signals and crosswalks for students choosing to use this intersection.

C. Alternative B3

Alternative B3 is similar to Alternative B2 in that it provides access to the site at both Lofty Avenue and Cold Spring Avenue. Alternative B3 differs from Alternative B2 mainly in that a signal will be located at Lofty Avenue rather than Cold Spring Avenue. The driveway on Monona Drive would coincide with Lofty Avenue and would be used for both entering and exiting the site. Site traffic will be divided between Lofty Avenue and Cold Spring Avenue, although with the signal at Lofty Avenue it is expected that more traffic will choose to use this intersection. Stop signs will remain at Cold Spring Avenue. Crosswalks will remain at their current locations at Lofty Avenue and Cold Spring Avenue. Non site-related traffic may drive through the school site to gain access to the signal at Lofty Avenue.

4.03 ALTERNATIVE C

A. Alternative C 1

Alternative C1 provides general access to the site exclusively at Cold Spring Avenue. Access directly onto Monona Drive via Lofty Avenue eliminated. focus nearly all of the site traffic to the Monona Drive/Cold Spring Avenue intersection. A driveway access will be located on Monona Drive south of Lofty Avenue for truck and staff use only. The

Figure 4.03-1 Alternative C1and C2 stop signs at Lofty Avenue and Cold Spring Avenue will remain. Crosswalks will remain at their current locations at Cold Spring Avenue and Lofty Avenue.

B. Alternative C2

Alternative C2 is identical to Alternative C1 with the exception that Cold Spring Avenue is signalized. Access directly onto Monona Drive via Lofty Avenue is eliminated. This will focus
nearly all of the site traffic to the Monona Drive/Cold Spring Avenue intersection. A driveway access will be located on Monona Drive south of Lofty Avenue for truck and staff use only. The stop sign at Lofty Avenue will remain. The signal at Cold Spring Avenue will be coordinated with the signal at West Dean Avenue to provide gaps in Monona Drive's traffic stream. These gaps will provide more opportunities for pedestrians to conveniently cross Monona Drive. Crosswalks will remain at their current locations at Cold Spring Avenue and Lofty Avenue.

SECTION 5
ALTERNATIVE ANALYSIS

5.01 ALTERNATIVE A

A. Alternative A1

With Alternative A1, access from the site will be extremely difficult for traffic turning left onto Monona Drive. All of the school site traffic will be forced to use this intersection, yet the projected level of service for left turns exiting the site is F with delays exceeding three minutes. With the exception of some yielding for vehicles turning into the school, traffic on Monona Drive will be relatively unimpeded by this alternative. Due to the proximity of the school building to the intersection, traffic circulation on school grounds may be difficult near the Lofty Avenue intersection. Here traffic queues will tend to block parking aisles creating congestion. Local traffic patterns to and from the school will also change as all vehicles will need to use Monona Drive rather than Cold Spring Avenue to access the site. Traffic gaps for pedestrians crossing Monona Drive will not be frequent, therefore crossing difficulty will remain the same. Also, since all school traffic is focused at the Lofty Avenue intersection, there is a greater potential for vehicle-pedestrian conflicts at this intersection.

B. Alternative A2

*

With a signal at Lofty Avenue, exiting the school site willbe mych easjer with a projected level of service of B to C and average delays of from 13 tg 18 seconds. There will be some delay to vehicles traveling on Monona Drive because two waypragression along Monona Drive will not be as effective. Calculated values of deray for throughtraffic in the peak am and pm hours is between 4 and 8 seconds pervehicle. Due to the proximity of the school building to the intersection, traffic-irculation on schoo grounds may be difficult near the Lofty "Avenue intersection. Here traffic queues will tend to-block parking aisles creating congestion. Local traffic patterns to and from the school will also change as all vehicles will need to use Monona Drive rather than Cold Sphing Avende to access the site. The signal will create substantially more gaps for pedestrians crossing Monona Drive. There may be some potential conflicts between left tutning vehieles and pedestrians at the Lofty Avenue crosswalk during the crossing phase of the signal cycle. Some pedestrians may also chose to ignore the signal control, also increasing the potential for pedestrian-vehicle conflicts.

5.02 ALTERNATIVE B

A. Alternative B1

This option is the most similar to the existing operations. Traffic exiting the site and turning left onto Monona Drive will continue to experience a level of service F with average delays exceeding 5 minutes. With the exception of some yielding for vehicles turning into the school, traffic on Monona Drive will be relatively unimpeded by this alternative. Due to the proximity of the school building to the intersection, traffic circulation on school grounds may be difficult near the Lofty Avenue intersection. By providing Cold Spring Avenue as another option for

A. 0 Traffic Data

Traffic data was obtained from WisDOT Wisconsin Highway Traffic Volume Data, March 1997, and counts taken in November and December, 1997.

Two way daily traffic volume on Cold Spring Avenue east of the Monona Grove High School driveway was 1073 vehicles and two way daily traffic volume on Jerome Street north of Cold Spring Avenue Was 455 vehicles.

*** Single Channel 15 Minute ***

Date : Nov 19, 1997 Wed Factor : 1.00

```
    e ID : 3
Ifo 1 :
[nfo 2 :
Lane 1-Normal, Axle, /2
\begin{tabular}{lccccc} 
& Mur & 1-SB, Monona approa Hour & Graph & 1000 \\
tarts & 0 & 15 & 30 & 45 & Total \\
\hline
\end{tabular}

```

rALS
114.1 period 456.5
3k PM Hour is $* * * 4: 15 \mathrm{pm}$ to $5: 15 \mathrm{pm} * * *$
Volume Lane 1 :
951
Peak Hour Factor : 0.943
Peak / Day Total : 0.225

```

Traffic Engineering Serivces Inc.

\section*{*** Single Channel 15 Minute ***}
:e ID : 3
info 1 :
[nfo 2 :
Date : Nov 20, 1997 Thu Factor : 1.00

Lane 1-Normal, Axle, /2

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 1M & & & & & & \\
\hline 12 & 6 & 4 & 5 & 6 & 21 & * \\
\hline 1 & 6 & 6 & 5 & 4 & 21 & * \\
\hline 2 & 7 & 3 & 1 & 3 & 14 & * \\
\hline 3 & 2 & 3 & 5 & 4 & 14 & * \\
\hline 4 & 3 & 7 & 7 & 7 & 24 & * \\
\hline - 5 & 5 & 16 & 14 & 34 & 69 & *** \\
\hline 6 & 38 & 42 & 90 & 100 & 270 & ************ \\
\hline 7 & 108 & 175 & 261 & 220 & 764 &  \\
\hline 8 & 140 & 145 & 133 & 97 & 515 &  \\
\hline 9 & 104 & 111 & 124 & 100 & 439 &  \\
\hline 10 & 86 & 122 & 122 & 138 & 468 & ************************* \\
\hline 11 & 126 & 158 & 144 & 131 & 559 & ************************* \\
\hline PM & & & & & & *************************** \\
\hline 12 & 140 & 150 & 161 & 158 & 609 & ************************* \\
\hline 1 & 150 & 162 & 132 & 134 & 578 & \\
\hline 2 & 150 & 150 & 143 & & 443 & ******************** \\
\hline
\end{tabular}
\begin{tabular}{lr} 
TALS & 4808 \\
TVERAGE & 81.5 period \\
326.0
\end{tabular}
ak AM Hour is *** 7:15am to 8:15am ***
-Volume Lane 1 : ..... 796
Peak Hour Factor ..... 0.762
Peak / Day Total : ..... 0.166

Volume Lane 1 : ..... 631
Peak Hour Factor ..... 0.974
"Peak / Day Total : ..... 0.131
```

 te ID : 3
    ```
Adj. Factor: 1.00
info 1 :
Info 2 :

\section*{ALL DAYS COMBINED}

************* Single Channel 15 Minute Final Report (page 2 of 2) \(k * * * * * * * * * * *\)

こe ID: 3
anfo 1 :
Info 2 :

Start Date : Nov 19, 1997 Wed End Date : Nov 20, 1997 Thu Adj. Factor: 1.00

\section*{ALL DAYS AVERAGED}

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline 9M & & & & & & \\
\hline 12 & 6 & 4 & 5 & 6 & 21 & * \\
\hline 1 & 6 & 6 & 5 & 4 & 21 & * \\
\hline 2 & 7 & 3 & 1 & 3 & 14 & * \\
\hline 3 & 2 & 3 & 5 & 4 & 14 & * \\
\hline 4 & 3 & 7 & 7 & 7 & 24 & ** \\
\hline 5 & 5 & 16 & 14 & 34 & 69 & *** \\
\hline 6 & 38 & 42 & 90 & 100 & 270 & ************ \\
\hline 7 & 108 & 175 & 261 & 220 & 764 &  \\
\hline 8 & 140 & 145 & 133 & 97 & 515 & ******************** \\
\hline 9 & 104 & 111 & 124 & 100 & 439 & ********************** \\
\hline 10 & 86 & 122 & 122 & 138 & 468 &  \\
\hline 11 & 126 & 158 & 144 & 131 & 559 & ************************* \\
\hline PM & & & & & & *************************** \\
\hline 12 & 140 & 150 & 161 & 158 & 609 & ************************** \\
\hline 1 & 150 & 162 & 132 & 134 & 578 & ************************** \\
\hline 2 & 150 & 150 & 143 & 132 & 575 &  \\
\hline 3 & 192 & 154 & 214 & 215 & 775 & *************************************** \\
\hline 4 & 212 & 239 & 233 & 227 & 911 &  \\
\hline 5 & 252 & 210 & 179 & 149 & 790 &  \\
\hline 6 & 161 & 164 & 117 & 113 & 555 & ************************ \\
\hline 7 & 102 & 73 & 88 & 83 & 346 & ******* \\
\hline 8 & 69 & 75 & 66 & 84 & 294 & ************* \\
\hline 9 & 71 & 53 & 78 & 49 & 251 & *********** \\
\hline 10 & 36 & 33 & 19 & 20 & 108 & *** \\
\hline 11 & 25 & 19 & 11 & 6 & 61 & *** \\
\hline
\end{tabular}
\begin{tabular}{lr} 
TALS & 9031 \\
IVERAGE & 94.1 period \\
376.3
\end{tabular}

Fak AM Hour is *** 7:15am to 8:15am ***
Volume Lane 1: 796
Peak Hour Factor : 0.762
Peak / Day Total : 0.088
?eak PM Hour is \(* * * 4: 15 \mathrm{pm}\) to \(5: 15 \mathrm{pm} * * *\)
Volume Lane 1 : 951
Peak Hour Factor : 0.943
*Peak / Day Total : 0.105

Traffic Engineering Serivces Inc.
890 N. Elm Grove Rd. Suite 211
Elm Grove, WI 53122
(414)797-9097Fax (414)797-9098
*** Single Channel 15 Minute ***
Date : Nov 19, 1997 Wed Factor : 1.00
e ID : 4
Lafo 1 :
Cnfo \(2:\)

Lane 1-Normal, Axle, /2
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline ur & \[
\begin{gathered}
1-\mathrm{NB} \\
0
\end{gathered}
\] & \[
\begin{aligned}
& \text { Monc } \\
& 15
\end{aligned}
\] & \[
\begin{aligned}
& \text { na } \\
& 30
\end{aligned}
\] & \[
\begin{gathered}
\text { pproa } \\
45
\end{gathered}
\] & Hour Total & Graph
\[
0
\] & 1200 \\
\hline \multicolumn{8}{|l|}{M} \\
\hline \multicolumn{8}{|l|}{-2} \\
\hline \multicolumn{8}{|l|}{1} \\
\hline \multicolumn{8}{|l|}{- 2} \\
\hline \multicolumn{8}{|l|}{3} \\
\hline \multicolumn{8}{|l|}{4} \\
\hline \multicolumn{8}{|l|}{- 5} \\
\hline \multicolumn{8}{|l|}{6} \\
\hline \multicolumn{8}{|l|}{\multirow[t]{2}{*}{7 7 '}} \\
\hline & & & & & & & \\
\hline \multicolumn{8}{|l|}{9} \\
\hline \multicolumn{8}{|l|}{-0} \\
\hline \multicolumn{8}{|l|}{11} \\
\hline \multicolumn{8}{|l|}{? M} \\
\hline \multicolumn{8}{|l|}{12} \\
\hline \multicolumn{8}{|l|}{1 277 *******} \\
\hline 2 & & & 128 & 149 & & \multicolumn{2}{|l|}{\multirow[b]{2}{*}{*********************************}} \\
\hline 3 & 209 & 243 & 218 & 228 & 898 & & \\
\hline 4 & 255 & 288 & 276 & 303 & 1122 & \multicolumn{2}{|l|}{***********************************} \\
\hline 5 & 305 & 271 & 209 & 193 & 978 & \multicolumn{2}{|l|}{} \\
\hline 6 & 163 & 176 & 140 & 103 & 582 & \multicolumn{2}{|l|}{\multirow[t]{2}{*}{***************}} \\
\hline -. 7 & 129 & 102 & 86 & 98 & 415 & & \\
\hline 8 & 81 & 75 & 74 & 58 & 288 & \multicolumn{2}{|l|}{***********} \\
\hline 9 & 79 & 50 & 50 & 44 & 223 & *****
\(* * * *\) & \\
\hline 10 & 26 & 31 & 24 & 27 & 108 & \multicolumn{2}{|l|}{} \\
\hline 11 & 12 & 19 & 10 & 15 & 56 & \multicolumn{2}{|l|}{***} \\
\hline \multicolumn{5}{|l|}{PALS} & \multicolumn{2}{|l|}{4947
520.7} & \\
\hline \multicolumn{2}{|l|}{VERAGE} & \multicolumn{3}{|l|}{130.2 period} & 520.7 & & \\
\hline \multicolumn{8}{|l|}{\%hk PM Hour is *** 4:15pm to 5:15pm ***} \\
\hline \multicolumn{2}{|l|}{Volume} & \multicolumn{2}{|l|}{Lane 1 :} & \multicolumn{3}{|l|}{1172} & \\
\hline \multicolumn{4}{|l|}{\multirow[t]{2}{*}{\begin{tabular}{l}
Peak Hour Factor \\
Peak / Day Total :
\end{tabular}}} & \multicolumn{3}{|l|}{0.961} & \\
\hline & & & & 0.237 & & & \\
\hline
\end{tabular}

Date : Nov 20, 1997 Thu Factor : 1.00
```

ce ID : 4
lnfo 1 :
Info 2 :

```

Lane 1-Normal, Axle, /2


; te ID : 4

Start Date : Nov 19, 1997 Wed
End Date : Nov 20, 1997 Thu
Adj. Factor: 1.00
-afo 1 :
Info 2 :

\section*{ALL DAYS COMBINED}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline our & \[
\begin{gathered}
1-\mathrm{NB}, \\
0
\end{gathered}
\] & \multicolumn{3}{|l|}{\[
\begin{aligned}
& \text { Monona approa } \\
& 15 \quad 30 \quad 45
\end{aligned}
\]} & Hour Total & Graph
0 \\
\hline AM & & & & & & \\
\hline 12 & 5 & 7 & 5 & 8 & 25 & * \\
\hline 1 & 6 & 3 & 5 & 3 & 17 & * \\
\hline 2 & 8 & 7 & 3 & 7 & 25 & * \\
\hline 3 & 6 & 5 & 8 & 8 & 27 & * \\
\hline 4 & 13 & 12 & 25 & 37 & 87 & **** \\
\hline 5 & 48 & 74 & 132 & 118 & 372 & *********************************** \\
\hline 6 & 197 & 243 & 296 & 192 & 928 &  \\
\hline 7 & 122 & 117 & 118 & 132 & 489 & ******************* \\
\hline 8 & 122 & 135 & 121 & 120 & 498 & *********************** \\
\hline 9 & 161 & 136 & 164 & 169 & 711 & *************************** \\
\hline 10 & 188 & 193 & 154 & 176 & 711 &  \\
\hline 11 & 221 & 246 & 193 & 160 & 820 & \\
\hline PM & & & & & & ************************** \\
\hline 12 & 165 & 180 & 203 & 236 & 784 &  \\
\hline 1 & 207 & 209 & & & 416 &  \\
\hline 2 & & & 128 & 149 & 277 & ********************************** \\
\hline 3 & 209 & 243 & 218 & 228 & 898 &  \\
\hline 4 & 255 & 288 & 276 & 303 & 1122 &  \\
\hline 5 & 305 & 271 & 209 & 193 & 978 & *************************** \\
\hline 6 & 163 & 176 & 140 & 103 & 582 & ********************** \\
\hline 7 & 129 & 102 & 86 & 98 & 415 & ******** \\
\hline 8 & 81 & 75 & 74 & 58 & 288 & *********** \\
\hline 9 & 79 & 50 & 50 & 44 & 223 & ******** \\
\hline 10 & 26 & 31 & 24 & 27 & 108 & **** \\
\hline 11 & 12 & 19 & 10 & 15 & 56 & ** \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline TALS & & 10776 \\
\hline ciderag & 117.1 period & 468.5 \\
\hline
\end{tabular}

हैak AM Hour is \(* * *\) 6:00am to 7:00am \(* * *\)
Volume Lane 1 : 928
Peak Hour Factor : 0.784
Peak / Day Total : 0.086
Peak PM Hour is \(* * * 4: 15 \mathrm{pm}\) to \(5: 15 \mathrm{pm} * * *\)
Volume Lane 1: 1172
Peak Hour Factor : 0.961
Peak / Day Total : 0.109
************* Single Channel 15 Minute Final Report (page 2 of 2) t************
```

:e ID : 4
info 1 :
Info 2 :

```
Start Date : Nov 19, 1997 Wed
End Date : Nov 20, 1997 Thu

\section*{ALL DAYS AVERAGED}

\begin{tabular}{lll} 
TALS & & 11244 \\
IVERAGE & 122.2 period & 488.9
\end{tabular}
?ak AM Hour is *** 6:00am to 7:00am ***
-Volume Lane 1: 928

Peak Hour Factor : 0.784
Peak / Day Total : 0.083
?eak PM Hour is *** \(4: 15 \mathrm{pm}\) to \(5: 15 \mathrm{pm}\) ***
Volume Lane 1 : 1172
Peak Hour Factor : 0.961
\({ }^{*}\) Peak / Day Total : 0.104


\section*{*** Single Channel 15 Minute ***}

 Start Date : Nov 19, 1997 Wed End Date : Nov 20, 1997 Thu Adj. Factor: 1.00

ALL DAYS COMBINED
\begin{tabular}{lcll} 
ur & 1-EB, Coldspring ap Hour & Graph \\
arts & 0 & 15 & 30
\end{tabular}
e ID : 2
.fo 1 :
nfo 2 :

Start Date : Nov 19, 1997 Wed End Date : Nov 20, 1997 Thu Adj. Factor: 1.00

ALL DAYS AVERAGED


ik AM Hour is *** 7:15am to 8:15am ***
 Jolume Lane 1 : ..... 16Peak Hour Factor : 0.667
?eak / Day Total : 0.101
eak PM Hour is *** \(3: 15 \mathrm{pm}\) to?eak Hour Factor : 0.625
\[
\begin{aligned}
& \text { ?eak Hour Factor : } 0.0 \angle 3 \\
& \text { Peak / Day Total }: 0.126
\end{aligned}
\]

Traffic Engineering Serivces Inc.
Elm Grove, WI 53122
(414)797-9097Fax (414)797-9098
*** Single Channel 15 Minute ***
Date : Nov 19, 1997 Wed
Factor : 1.00
\begin{tabular}{rl} 
:e ID & 1 \\
Iffo 1 & \(:\) \\
Info 2 &
\end{tabular}

Lane 1-Normal, Axle, /2
\begin{tabular}{lclll} 
& \(1-\) WB, Coldspring ap Hour & Graph \\
jur & 0 & 15 & 30 & 45 \\
ratal & 0
\end{tabular}
iM
12
1
2
3
4
5
6
7
8
9
10
11
PM
12


TALS
VERAGE
10.0 period

380
ak PM Hour is \(* * * 7: 30 \mathrm{pm}\) to \(8: 30 \mathrm{pm} * * *\)
Volume Lane 1: 93
Peak Hour Factor : 0.528
Peak / Day Total : 0.245
*** Single Channel 15 Minute ***

Date : Nov 20, 1997 Thu Factor : 1.00
:e ID \(: 1\)
Lnfo \(1:\)
Info \(2:\)

Lane 1-Normal, Axle, /2
\begin{tabular}{lclll} 
Jur & 1-WB, Coldspring ap Hour Graph \\
tarts & 0 & 15 & 30 & 45 \\
Total & 0
\end{tabular}


28:15
Traffic Engineering Serivces Inc.

\section*{ALL DAYS COMBINED}


    e ID : 1
    fo 1 :
nfo 2 :

Start Date : Nov 19, 1997 Wed End Date : Nov 20, 1997 Thu Adj. Factor: 1.00

ALL DAYS AVERAGED

\begin{tabular}{|c|c|c|c|c|c|c|}
\hline M & & & & & & \\
\hline 2 & 0 & 1 & 0 & 0 & 1 & * \\
\hline 1 & 0 & 1 & 0 & 0 & 1 & * \\
\hline 2 & 0 & 0 & 0 & 0 & 0 & * \\
\hline 3 & 0 & 0 & 0 & 0 & 0 & * \\
\hline 4 & 0 & 0 & 2 & 0 & 2 & * * \\
\hline 5 & 0 & 0 & 1 & 6 & 7 & *** \\
\hline 6 & 5 & 2 & 2 & 2 & 11 & **** \\
\hline 7 & 7 & 31 & 49 & 37 & 124 & ******************************************* \\
\hline 8 & 5 & 14 & 4 & 6 & 29 & ********** \\
\hline 9 & 6 & 2 & 4 & 7 & 19 & ******* \\
\hline 0 & 6 & 3 & 11 & 5 & 25 & ******** \\
\hline 11 & 9 & 19 & 10 & 12 & 50 & ****************** \\
\hline DM & & & & & & \\
\hline 2 & 12 & 3 & 4 & 21 & 40 &  \\
\hline 1 & 14 & 5 & 14 & 17 & 50 & ****************** \\
\hline 2 & 19 & 9 & 12 & 10 & 50 & ****************** \\
\hline 3 & 14 & 12 & 48 & 9 & 83 & ***************************** \\
\hline 4 & 11 & 9 & 7 & 10 & 37 & ************* \\
\hline 5 & 10 & 7 & 16 & 8 & 41 & *************** \\
\hline 6 & 22 & 17 & 8 & 10 & 57 & ******************** \\
\hline 7 & 20 & 10 & 17 & 12 & 59 & ********************* \\
\hline 8 & 44 & 20 & 8 & 2 & 74 & ************************** \\
\hline 9 & 2 & 1 & 0 & 1 & 4 & ** \\
\hline . 0 & 0 & 2 & 0 & 0 & 2 & * \\
\hline +1 & 0 & 0 & 0 & 1 & 1 & * \\
\hline \multicolumn{2}{|l|}{\multirow[t]{2}{*}{\[
\begin{aligned}
& \text { IALS } \\
& \text { aRAGE }
\end{aligned}
\]}} & \multicolumn{3}{|l|}{\multirow[b]{2}{*}{8.0 period}} & 767 & \\
\hline & & & & & 32.0 & \\
\hline
\end{tabular}

7k AM Hour is *** 7:00am to 8:00am ***
Tolume Lane 1 : 124
Peak Hour Factor : 0.633
Deak / Day Total : 0.162
eak PM Hour is *** 7:30pm to 8:30pm ***
Volume Lane 1 : 93
?eak Hour Factor : 0.528
seak / Day Total : 0.121

Monona Drive \& Coldspring 11/19 and 11/20 1997
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline & & \multirow[t]{2}{*}{W} & & NB & & & \(N B+S B\) \\
\hline STARTS & & & 1 & NB 25 & 0 & & 46 \\
\hline 12 AM & & 21 & 1 & 17 & 0 & & 38 \\
\hline 2 & & 14 & 0 & 25 & 1 & & 39 \\
\hline 3 & & 14 & 0 & 27 & 1 & & 41 \\
\hline 4 & & 24 & 2 & 87 & 2 & & 111 \\
\hline 5 & & 69 & 7 & 372 & 1 & & 441 \\
\hline 6 & & 270 & 11 & 928 & 9 & & 1198 \\
\hline 7 & & 764 & 124 & 489 & 14 & & 1253 \\
\hline 8 & & 515 & 29 & 498 & 8 & & 1013 \\
\hline 9 & & 439 & 19 & 630 & 7 & & 1069 \\
\hline 10 & & 468 & 25 & 711 & 3 & & 1179 \\
\hline 11 & & 559 & 50 & 820 & 6 & & 1379 \\
\hline 12 PM & & 609 & 40 & 784 & 15 & & \\
\hline 1 & 1 & 578 & 50 & 416 & 8 & & 994 \\
\hline 2 & 2 & 575 & 50 & 277 & 13 & & 852 \\
\hline 3 & 3 & 775 & 83 & 898 & 19 & & 1673 \\
\hline 4 & 4 & 911 & 37 & 1122 & 13 & & 2033 \\
\hline & 5 & 790 & 41 & 978 & 10 & \(\checkmark\) & 1768 \\
\hline & 6 & 555 & 57 & 582 & 10 & & 1137 \\
\hline & 7 & 346 & 59 & 415 & 5 & & 761 \\
\hline & 8 & 294 & 74 & 288 & 6 & & 582 \\
\hline & 9 & 251 & 4 & 223 & 3 & & 474 \\
\hline 10 & & 108 & 2 & 108 & 3 & & 216 \\
\hline 11 & & 61 & 1 & 56 & 2 & L & 117 \\
\hline
\end{tabular}

Traffic Engineering Services, Inc.
890 N. Blo Grove Rd., Suite 211
Bla Grove, WI 53122
(414)797-9097 Pax (414)797-9097

Site code : 00000001
Start Date: 11/19/97
File I.D. : MOMONAJO
Page : 1

Vehicle group 1
 te \(11 / 19 / 97\)
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & & & \\
\hline I & 0 & 0 & 139 & 11 ! & 0 & 2 & 3 & 14 & 0 & 25 & 161 & 0 & 1 & 0 & 0 & 0 & 356
374 \\
\hline -15 & 0 & 0 & 141 & 10 & 0 & 3 & 3 & 15 & 0 & 40 & 159 & 1 & 1 & 2 & 0 & 1 & 475 \\
\hline 11
\(: 30\) & 0 & 0 & 190 & 10 & 0 & 15 & 2 & 18 & 0 & 47 & 190 & 1 & 0 & 2 & 0 & \(1:\) & 583 \\
\hline ; & 0 & 2 & 254 & \(16:\) & 0 & 23 & 1 & 15 & 0 & & & 2 & 2 & 8 & 1 & \(2!\) & 1788 \\
\hline . stal & 0 & 2 & 124 & 47 ! & 0 & 43 & 9 & 62 ! & 0 & 141 & 745 & 2 & & & & & \\
\hline , & 0 & 0 & 149 & 31 & 0 & 1 & 0 & & 0 & & 171 & \(1:\) & 1 & 0 & 1 & 2
0 & 345
322 \\
\hline 5 & 0 & 0 & 145 & 2 & 0 & 2 & 2 & 4 & 0 & 5 & 152
154 & 0 & 0 & 0 & 0 & 0 & 319 \\
\hline :30 & 0 & 0 & 152 & 1 & 0 & 2 & 0 & & 0 & 5 & & \(0:\) & 0 & 0 & 0 & 0 & 296 \\
\hline \(\therefore 15\) & 0 & 0 & 139 & \(2:\) & 0 & 3 & 0 & \(\underline{17}\) & 0 & 23 & 632 & \(1:\) & 1 & 1 & 2 & 21 & 1282 \\
\hline otal & 0 & 0 & 585 & 8 : & 0 & 8 & 2 & 17 & 0 & 2 & , & & & & & & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & & 2 & 01 & 410 \\
\hline (10 & 1 & 1 & 202 & 51 & 1 & 1 & 1 & 81 & 0 & 16 & 162 & 1 & 1 & 2 & 0 & 2 & 486 \\
\hline 115 & 0 & 1 & 234 & 4 & 0 & 3 & 0 & 4 & 0 & 12 & 248 & 0 & 1 & 4 & 0 & 0 & 516 \\
\hline 6:30 & 0 & 2 & 234 & 8 & 1 & 1 & 2 & 3 & 0 & 18 & 230 & 2 & 0 & 2 & 0 & 0 & 474 \\
\hline \(6 \cdot 15\) & 0 & 0 & 222. & 5 & & 2 & 0 & 18 & 0 & 48 & 863 & 8 & 2 & 12 & 2 & 2 & 1886 \\
\hline lotal & 1 & 4 & 892 & 22 ! & 2 & 7 & 3 & 18 & 0 & 48 & 86 & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{lllllllll:llll:llll:r}
700 & 0 & 0 & 191 & 5 & 0 & 0 & 0 & 0 & 0 & 7 & 200 & 0 & 0 & 0 & 0 & 0 & 403 \\
715 & 0 & 0 & 185 & 4 & 0 & 2 & 0 & 2 & 0 & 2 & 189 & 0 & 0 & 0 & 0 & 2 & 386 \\
130 & 0 & 0 & 198 & 2 & 0 & 1 & 0 & 0 & 0 & 3 & 192 & 0 & 0 & 0 & 0 & 0 & 396 \\
\hdashline \(7: 45\) & 0 & 0 & 200 & 1 & 0 & 0 & 0 & 0 & 0 & 2 & 175 & 0 & 0 & 2 & 2 & 0 & 382 \\
\hdashline Iotal & 0 & 0 & 774 & 12 & 0 & 3 & 0 & 2 & 0 & 14 & 756 & 0 & 0 & 2 & 2 & 2 & 1567
\end{tabular}
\(\begin{array}{llllllllllllllllllll}-90 T A L * & 2 & 8 & 4265 & 113 & 4 & 88 & 17 & 146 & 3 & 304 & 4365 & 18 & 9 & 38 & 12 & 16 & 9408\end{array}\)

Fraffic Bngineering Services, Inc.
B90 R. Eln Grove Rd., Suite 211
Bla Grove, HI 53122
(414)797-9097 Fax(414)797-9097

Site Code : 00000002
Start Date: 11/19/97
Pile I.D. : GAP_3002
Page : 1
"diy done on :, Morthbound/Southbound
Vehicle group 1


```

12/22/97
14:03:33
Traffic Engineering Serivces Inc. 890 N. Elm Grove Rd. Suite 211
EIm Grove, WI 53122
(414)797-9097Fax (414)797-9098
*** Single Channel 15 Minute ***

``` Info 2 :
```

```
Site ID : LOFTY AVE.
```

Site ID : LOFTY AVE.
Info 1 :
Info 1 :
Info 2 :

```
    Info 2 :
```

Date : Dec 16, 1997 Tue Factor : 1.00
Lane 1-Normal, Axle, /2

Lane 1-Normal, Axle, /2

```
Starts 0 15 30 45 Total 0
```

 AM
 12
 1
 2
 3
 4
 5 あ
 6
 7
 8
 9
 10
 11
 PM
 PM
 12
1
2
2
3
4
5
6
7
8
9
10
11

		2	7
0	2	0	4
2	2	23	14
8	30	14	15
7	5	3	5
3	4	2	8
8	9	10	5
6	21	49	14
2	7	4	6
9	6	9	9
5	4	9	10
3	7	11	4
3	2	4	5
0	7	5	4
0	0	9	0
2	0	5	3

 9 ****
 9
 6
 TOTALS
 AVERAGE
 7.0 period
 436
 28.1
 Peak AM Hour is \(k \star\) 10:30am to 11:30am \(k \star\) t
 \(\begin{array}{lr}\text { Volume Lane } 1: & 75 \\ \text { Peak Hour Factor : } & 0.625\end{array}\)
 \(\begin{array}{lr}\text { Volume Lane } 1: & 75 \\ \text { Peak Hour Factor : } & 0.625\end{array}\)
 \(\begin{array}{lr}\text { Volume Lane } 1: & 75 \\ \text { Peak Hour Factor : } & 0.625\end{array}\)
 Peak / Day Total : 0.172
 Peak PM Hour is \(t \star * 3: 00 \mathrm{pm}\) to \(4: 00 \mathrm{pm} * * *\)
 Volume Lane 1 : 90
 Peak Hour Factor : 0.459
 Peak / Day Total : 0.206
 Traffic Engineering Serivces Inc.

IIte ID : LOFTY AVE. Info 1 : Info 2 :

Lane 1-Normal, Axle, /2

Traffic Engineering Serivces Inc.
Page: 3
12/22/97
890 N. Elm Grove Rd. Suite 211
Elm Grove, WI 53122
(414)797-9097Fax(414)797-9098
 Start Date : Dec 16, 1997 Tue Site ID : LOFTY AVE. End Date : Dec 17, 1997 Wed Adj. Factor: 1.00
Info 1 :
Info 2 :

ALL DAYS COMBINED

Traffic Engineering Serivces Inc.


```
site ID : LOFTY AVE.
    Info 1 :
    Info 2 :
```

 Start Date: Dec 16, 1997 Tue
 End Date : Dec 17, 1997 Hed
 Adj. Factor: 1.00

RAPHIC SUMMARY SHEET
E-T-704-70

\qquad

ZAFFIC SURVEY VEHICLE VOLUME COUNT
जRAPHIC SUMMARY SHEET
E-T-704-70

- ZAFFIC SURVEY VEHICLE VOLUME COUNT

ZAPHIC SUMMARY SHEET
Е-т-704-70
date $12 / 16 / 97$ dAr TUESDAY THE $7: 15$ AM TO $8: 15 A M$ SHEET \qquad $\mathrm{OF}-$ RURAL CITY \qquad LOCATION: DISTRICT___ COUNTY_ LANE wiersecton M nONA PRIVE AND \qquad LOFTY AVENUE WEATHE Sunny road condor DRy

ZAFFIC SURVEY VEHICLE VOLUME COUNT

ZAPHIC SUMMARY SHEET

\doteq-T-704-70
DATE $12 / 17 / 97$ DAr WEDNESDAY TIE $3!5 / 5$ To 415 PM SHEET Locator District L country DANE RURAL CTr \qquad intersection Monona DRIVE and LOFTY AVENUE weather_ sunny road conomon DRy OBSERVERS

Traffic Count Summary
Location: Monona Drive and Lofty Avenue
Date: 12/16/97

	Southbound				Northbound				Eastbound				
			through	left		right	ugh	eft	pe			thro	
07:15	13	2	141	n/a	0	n/a	199	3		0		n/a	2
07:30	33	4	190	n/a	0	n/a	237	4		0	3	n/a	
07:45	30	1	254	n / a	0	n/a	264	1		3	6	n/a	
08:00	1	1	149	n/a	0	n/a	182	0		0		n/a	0
total	77	8	734		0		882	8		3	10		4

Date: 12/17/97

	Southbound				Northbound				Eastbound				
	ped	right	through	left					ped	rig		thro	
15:15	26	1	191	n/a	0	n/a	233	1		1		n/a	1
15:30	30	0	173	n / a	0	n/a	200	5		2	5		1
15:45	5	1	201	n/a	0	n/a	214	0		2	0		1
16:00	0	2	202	n/a	0	n/a	178	1		4	1	n/a	2
total	61	4	767		0		825	7		9	6		5

APPENDIX B TRIP GENERATION

B. 0 Trip Generation

A. Existing Conditions

The school site currently has 182 parking spaces. These are generally completely filled during school, with an additional 50 school related vehicles observed parked on local streets in adjacent neighborhoods. Hence there are at least 232 vehicles making a one way trip to the site in the morning. Additionally, there are vehicles dropping off students in the morning.

B. Existing and Projected Calculated Trips

The school currently has 750 students and 132,000 Square Feet. The proposed school will have 1,000 students and 227,000 Square Feet. For a baseline trip generation, the average of trips calculated for students and square footage was used. Note that this calculated figure is less than the observed trips. To not overstate the potential for additional trips, however, these lower I.T.E. average trip rates are used. This I.T.E. baseline was factored by the additional number of students to project future trip generation characteristics. The following table summarizes the average trip generation calculations

Table B. 1 Trip Generation

B. 1 Trip Distribution

A. Alternative A and B 3

With Alternative A and $B 3$, all school trips are expected to use the Lofty Avenue/Monona Drive intersection. With alternative B3, some trips may actually use the Monona Drive/Cold Spring Avenue intersection, however by assigning all school traffic to the Lofty Avenue intersection this represents a worst case scenario for operation at the Lofty Avenue intersection. Trips were distributed to the north or south in proportion to the existing AM north south splits at Cold Spring Avenue and Monona Drive. PM north south splits were not used as thèse are likely not representative of true origins and destinations due to long delays at the east
approach of the Cold Spring Avenue/Monona Drive intersection during the PM peak hour. Hence north south splits were assumed to be 24 percent north and 76 percent south.

B. Alternatives B1, B2 and C1, C2

With Alternatives B1, B2, C1, and C2, all school trips are assumed to use the Monona Drive/Cold Spring Avenue intersection. Some trips may actually use the Lofty Avenue/Monona Drive intersection, however by assigning all school traffic to the Cold Spring Avenue intersection this represents a worst case scenario for operation at the Cold Spring Avenue intersection. Trips were distributed to the north or south in proportion to the existing AM north south splits at Cold Spring Avenue and Monona Drive. PM north south splits were not used as these are likely not representative of true origin destinations due to long delays at the east approach of the Cold Spring Avenue/Monona Drive intersection during the PM peak hour. Hence north south splits were assumed to be 24 percent north and 76 percent south.

TRAFFIC SURVEY VEHICLE VOLUME COUNT RAPHIC SUMMARY SHEET
 location: district_ L country DANE INTERSECTION MONONA DRIVE _AND COLD SPRING AVENUE RURAL cTr \qquad WEATHER \qquad ROAD CONDIGN \qquad OBSERVERS

RAFFIC SURVEY VEHICLE VOLUME COUNT
RAPHIC SUMMARY SHEET
E- T-704-70
PROJECTED VOLUMES ALTERNATIVE BIB, CICQ

DATE \qquad DAY \qquad TIE \qquad $40 M$ SHEET \qquad OF

LOCATION: DISTRICT_ I COUNTY_ DANE RURAL \qquad CIT \qquad
INTERSECTION MOLINA DRIVE AND \qquad COLPSPRING AUENUL WEATHER \qquad ROAD CONDITION \qquad OBSERVERS \qquad

tRAFFIC SURVEY VEHICLE VOLUME COUNT RAPHIC SUMMARY SHEET

PROJECTED VOLUMES ALTERNATIVE AI, AQ, BB DATE DAY \qquad TM E 7 AM TO 8 AM SHEET. \qquad OFLocation district L count DANE RURAL cTr INTERSECTION MO MONA DRIVE AND LOFTY AVENUE WEATHER \qquad ROAD CONDTTON \qquad OBSERVERS \qquad

-RAFFIC SURVEY VEHICLE VOLUME COUNT GRAPHIC SUMMARY SHEET
ET-704-70
PROJECTED VOLUMES ALERNATIVE AI, AD, BB DATE DAY \qquad TM E З $P M$ TO $4 P M$ SHEET \qquad LOCATION: DISTRICT_I COUNTY_ DANE RURAL \qquad CITY \qquad intersection Monona drive and lofty avenue WEATHER \qquad ROAD CONDITIoN \qquad OBSERVERS \qquad

C. 0 Traffic Analysis

A. Existing Conditions

Existing Conditions were modeled using the Highway Capacity Manual Software.

B. Projected Alternatives Operation

Projected alternatives were modeled using the Highway Capacity Manual Software for unsignalized intersections and SIGNAL94 for signalized intersections. SIGNAL94 optimizes signal timing to assist in making consistent comparisons between alternatives. Delay and Level of Service are calculated in SIGNAL94 using Highway Capacity Manual criteria.

C. Recommended Gap

As stated in the I.T.E. Traffic Engineering Handbook, 4th. Edition, p. 78, the recommended pedestrian gap can be computed using the following formula:
$\mathrm{G}=\mathrm{W} / \mathrm{S}+\mathrm{R}+(\mathrm{N}-1) / 2$
where:
$G=\quad$ adequate gap time in seconds
$W=\quad$ width in feet of the roadway tobe crossed
$S=\quad$ pedestrian walking speed, (we assumed $4.0 \mathrm{ft} / \mathrm{sec}$ for this study)
$R=$ assumed to be 3 sek, the timo which experience has shown for the typical roadway
$(\mathrm{N}-1) / 2=$ the dedestrian clearance interval, N is the 85 th percentile group size divided by 5, andx represents the first row and 2 the time interval in seconds between rows

For this study, we used the following values:
$W=48 \mathrm{ft}$
$\mathrm{S}=4.0 \mathrm{ft} / \mathrm{sec}$
$(\mathrm{N}-1) / 2=\mathrm{O}$ (we used the minimum gap for one pedestrian to cross Monona Drive)
$\mathrm{R}=3$

Then the calculated gap requirement is:
$\mathrm{G}=48 / 4.0+0+3=15 \mathrm{sec}$
ie Worksheets) attached are provided as an attachment to the Engineering Investigation Study for.
section: MONONA DR: COLDSPRINF
yTomNNilage: MONONA / MADISON
Country.
DANE
 \qquad
('E: The warrants for rural areas (70% of urban warrant) are used when the 85% speed on the major street exceeds $40 \mathrm{~m} . \mathrm{p} . \mathrm{h}$. or when the intersection lies within the built-up area of an isolated community having a population of less than 10,000 .
\rightarrow ANALYSIS IS BASED ON COUNTS CONDUCTED ON $\frac{1 / 19}{\text { DATES }}$ \& $1 / 2 \Gamma^{2}$
Warrants Satisfied

*' is analysis was conducted by.
BILL PUTNAM
(Name)
STRAND ASSC((Name) ATIS, INC.

URBAN

TRAFFIC CONTROL SIGNALS IN URBAN AREAS COMPARISON OF WARRANTS $1,2,6,8,9$ AND 11

RRANT 1 MINIMUM VEHICULAR VOLUME
ARRANT 2 INTERRUPTION OF CONTINUOUS TRAFFIC 'RRANT 8 COMBINATION OF WARRANTS

	Number of Thr Lanes Per Approach	Vehicles on MANOR STREET (Both Approaches) Minimum to Satisfy Warrant			Vehicles on MINOR STREET (One Approach) 8 Hours Minimum to Satisfy Warrant

satisfy Warrant 8, Combination of Warrants, the 80% requirements need to be met for both Warrants 1 and 2
'olumes equal to 80% of the nommal requirements which should be used for Warrant 6, Accident Experience and for Warrant 8, Combination of Warrants.
I ck which hours satisfy warrants 1 and 2 (W1, W2) above:

3RANT 6 ACCIDENT EXPERIENCE
YES \mathbb{X} NO

Theck which conditions apply and record volumes for the highest four hours.
o determine if warrant 9 and/or $\pi 1$ is satisfied, plot the highest four hours on the figures below (4 hours minimum, 8 hours recommended)

|ARRANT 9

FOUR hour volume URBAN
FIGURE 4-7. FOUR HOUR VOLUME WARRANT

WARRANT 11
PEAK hour volume URBAN
WARRANT SATISFIED
区YES \square NO
FIGURE 4-5. PEAK HOUR VOLUME WARRANT

wIsconsin Department of Transportation
Iffic Signal Warrant Summary Sheet
r. Worksheets) attached are provided as an attachment to the Engineering investigation Study for.
: cion MONONA DRIVE / COLDSPRING AVENUE
yTomnNilas: $M O N O N A / M A D I S O N$ camp: DANE

I' \because INTERSECTION IS ANALYZED FOR \qquad WARRANTS. COMMENTS: \qquad PROJECTED

VOLUMES ASSUMING REVISED SCHOOL SITE
: The warrants for rural areas (70% of urban warrant) are used when the 85% speed on whity having a population 40 m.p.h. or when the intersection lies within the built-up area of an
of less than 10,000 .
IE ANALYSIS IS BASED ON COUNTS CONDUCTED ON \qquad ,19 FROM \qquad欮 $T O$ \qquad PM

pis analysis was conducted by,
BILL PUTNAM
(Name)
(Agency)
(Date)
ineck which conditions apply and record volumes for the highest four hours.
0 determine if warrant 9 and/or 11 is satisfied, plot the highest four hours on the figures below (4 hours minimum, 8 hours recommended)
 One Approach)

ARRANT 9

FOUR hour volume URBAN

FIGURE 4-7. FOUR HOUR VOLUME WARRANT

*NOTE TI5 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACH WITH TWO OR MORE LANES AND 80 VPH APPLIES AS THE LOWER THRESHOLD VOLUME FOR A MINOR STREET APPROACHING WITH ONE LANE

MONONA DRIVE,
COLDSPRING AVENUE WITH PROJLCTED VOLUMES WARRANT SATISFIED WARRANT 11 PEAK HOUR VOLUME URBAN \triangle YES $\square N O$

FIGURE 4-5. PEAK HOUR VOLUME WARRANT

t Worksheets) attached are provided as an attachment to the Engineering Investigation Study for.
: scion MONONA DRIUE/LOETY. AVENUE
yTomnNilase: MONONA / MADISON
cons: DANE

? ${ }^{3}$ analysis was conducted by \qquad
BILL PUTNAM
wetermine if warrant 9 and/or 11 is satisfied, plot the highest four hours on the figures below (4 hours minimum, 8 hours recommended).

tRRANT 9

 FOUR HOUR VOLUME URBAN \square YES $\square N O$FIGURE 4-7. FOUR HOUR VOLUME WARRANT

LOFTY AUENUE

-OLDSPRINE AVENUE WITH PROJECTED VOLUMES

\therefore RRANT 11 PEAK HOUR VOLUME URBAN \square XYES \square NO

WARRANT SATISFIED

FIGURE 4-5. PEAK HOUR VOLUME WARRANT

Page 1

File Name MONCOLDP. HCO
Streets: (N-S) Monona Drive Major street Direction.... NS Length of Time Analyzed... 60 (min) Analyst. whp
Date of Analysis.............. 11/26/97
Other Information......... 7-8 am
Two-way Stop-controlled Intersection

No. Lanes Stop/Yield	Northbound			Southbound			Eastbound			Westbound		
						R				L	T	R
	$0>$	2				0	$0>$	$1<$	0		1	0
			N			N						
Volumes	2	745	141	47	724	2	2	1	8	62	9	77
PHF	. 77	. 77	. 77	. 77	. 77	. 77	. 77	. 77	. 77	. 77	77	
Grade		-4			4			-2			1	
MC's (\%)	0	0	0	0	0	0	0	0	0	0	0	0
SU/RV'S (\%)	0	0	0	0		0	0	0	0	0	0	0
CV's (\%)	5	5	5	5	5	5	0	0	0	0	0	0
PCE's	. 8	. 8	. 8	1.3	1.3	1.3	1	1	1	1.1	1.1	1.1

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.50	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.50	3.30
Left Turn Minor Road	7.00	3.40

Center For Microcomputers In Transportation HCS: Unsignalized Intersection

WorkSheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph)	443	363
Potential Capacity: (pcph)	826	907
Movement Capacity: (pcph)	826	907
Prob. of Queue-free State:	0.92	0.99
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph)	886	726
Potential Capacity: (pcph)	573	699
Movement Capacity: (pcph)	573	699
Prob. of Queue-free State:	0.86	1.00
TH Saturation Flow Rate: (pcphpl)	3400	3400
RT Saturation Flow Rate: (pcphpl)	1700	1700
Major LT Shared Lane Prob. of Queue-free State:	0.78	1.00
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph)	1590	1660
Potential Capacity: (pcph)	128	117
Capacity Adjustment Factor due to Impeding Movements	0.78	0.78
Movement Capacity: (pcph)	100	91
Prob. of Queue-free State:	0.87	0.99
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph)	1589	1524
Potential Capacity: (pcph)	102	112
Major LT, Minor TH Impedance Factor:	0.77	0.68
Adjusted Impedance Factor:	0.82	0.75
Capacity Adjustment Factor	0.82	0.69
due to Impeding Movements	0.82 83	78

Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1 Page 3

Intersection Performance Summary AM

File Name MONCOLD. HCO
File Name MONCOLD. HCO
Streets: ($\mathrm{N}-\mathrm{S}$) Monona Drive
Streets: ($\mathrm{N}-\mathrm{S}$) Monona Drive
Major Street Direction.... NS
Major Street Direction.... NS
Length of Time Analyzed... 60 (min)
Length of Time Analyzed... 60 (min)
Analyst. whop
Analyst. whop
Date of Analysis.......... . 11/26/97
Date of Analysis.......... . 11/26/97
Other Information......... 4-5 pm
Other Information......... 4-5 pm
(E-W) Coldspring Ave.

ExISTING CONDITIOLS

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (ty)	Time (te)
Left Turn Major Road	5.50	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.50	3.30
Left Turn Minor Road	7.00	3.40

WorkSheet for TWSC Intersection

Step 1: RT from Minor street	WB	EB
Conflicting Flows: (vph)	456	448
Potential Capacity: (pcph)	813	821
Movement Capacity: (pcph)	813	821
Prob. of Queue-free State:	0.99	0.98
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph)	911	896
Potential Capacity: (pcph)	556	566
Movement Capacity: (pcph)	556	566
Prob. of Queue-free State:	0.94	0.99
TH Saturation Flow Rate: (pcphpl)	3400	3400 1700
RT Saturation Flow Rate: (pcphpl)*	1700	1700
Major LT Shared Lane Prob. of Queue-free State:	0.91	0.98
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph)	1813	1835
Potential Capacity: (pcph)	95	92
Capacity Adjustment Factor due to Impeding Movements	0.90	0.90
Movement Capacity: (pcph)	85	82
Prob. of Queue-free State:	0.96	0.98
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph)	1810	1788
Potential Capacity: (pcph)	74	76
Major LT, Minor TH		
Impedance Factor: Factor:	0.87 0.90	0.86 0.90
Adjusted Impedance Factor:	0.90	0.90
Capacity Adjustment Factor due to Impeding Movements	0.89	0.89
Movement Capacity: (pcph)	66	67

Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1

Page 3

Intersection Performance Summary $P M$

Mo	ment	FlowRate v(pcph)	MoveCap Cm (pcph)		SharedCap Csh (pcph)	Avg. Tot Delay		LOS		Delay By App
EB	L	2	67	$>$				>		
EB	T	2	82	>	243		15.9	>	C	15.9
EB	R	13	821	>				>		
WB	L	22	66	>				>		
WB	T	3	85	$>$	90		63.8	$>$	F	63.8
WB	R		813	>				>		
NB	L	7	566			6.4		B		0.1
SB	L	31	556			6.9		B		0.2

$$
\text { Intersection Delay }=1.2
$$

Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1

Page 1
File Name MONLOFAM.HCO
Streets: ($N-S$) monona drive
(E-W) Lofty
Major Street Direction
NS
Length of Time Analyzed... 60 (min)
Analyst. whp
Date of Analysis........... 12/9/97
Other Information......... School Access at Lofty only monlofam

Two-way stop-controlled Intersection

No. Lanes Stop/Yield	$\underset{\mathrm{L}}{\text { Northbound }} \quad \mathrm{T}$			Southbound			Eastbound $\mathrm{L} \quad \mathrm{T} \quad \mathrm{R}$			Westbound $\mathrm{L} \quad \mathrm{T}$		
	0	2	0	0	2	0			0		1	1
			N			N						
Volumes	8	745	200	64	724	8	4	1	10	95	95	. 95
PHF	. 95	. 95	. 95	. 95	. 95	. 95	. 95	. 95	. 95	. 95	. 95	
Grade		0			0					0	0	0
MC's (\%)	0	0	0	0	0	0	0			0	0	0
SU/RV's (\%)	0	0	0	0		0	0			0	0	0
CV's (\%)	0	0		0		0	1.1		1.1	1.1	1.1	1.1
PCE's	1.1	1.1	1									

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.50	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.50	3.30
Left Turn Minor Road	7.00	3.40

WorkSheet for TWSC Intersection		
Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph)	472	366
Potential Capacity: (pcph)	798	903
Movement Capacity: (pcph)	798	903
Prob. of Queue-free State:	0.97	0.99
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph)	945	732
Potential Capacity: (pcph)	533	694
Movement Capacity: (pcph)	533	694
Prob. of Queue-free State:	0.86	0.99 3400
TH Saturation Flow Rate: (pcphpl)	3400	3400
RT Saturation Flow Rate: (pcphpl)*	1700	1700
Major LT Shared Lane Prob. of Queue-free State:	0.81	0.98
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph)	1649	1745
Potential Capacity: (pcph)	118	104
Capacity Adjustment Factor due to Impeding Movements	0.80	0.80
Movement Capacity: (pcph)	94	83
Prob. of Queue-free state:	0.99	0.99
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph)	1641	1545
Potential Capacity: (pcph)	95	109
Major LT, Minor TH		
Impedance Factor:	0.79	0.79
Adjusted Impedance Factor:	0.84	0.84
Capacity-Adjustment Factor due to Impeding Movements	0.83	0.81
Movement Capacity: (pcph)	78	88

Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1 \quad Page 3

Intersection Performance Summary

Center For Microcomputers In Transportation HCS: Unsignalized Intersection

MONLOFPM. HCO
File Name
Streets: ($\mathrm{N}-\mathrm{S}$) monona drive
(E-W) Lofty
Major Street Direction.... NS
Length of Time Analyzed... 60 (min)
Analyst. whp
Date of Analysis.......... 12/9/97
Other Information........ School Access at Lofty only monlofpm
Two-way Stop-controlled Intersection

	Northbound L T R			Southbound L $\quad \mathrm{T} \quad \mathrm{R}$			$\begin{aligned} & \text { Eastbound } \\ & \mathrm{L} \quad \mathrm{~T} \\ & \mathrm{R} \end{aligned}$			Westbound L T		
No. Lanes	0	2	0	0	$2<$	0		1	0	0	1	1
Stop/Yield			N			N						
Volumes	7	798	74	23	752	4	5	1	6 95	144 95	$\frac{1}{5}$	45 .95
PHF	. 95	. 95	. 95	. 95	. 95	95	. 95	95	. 95	. 95	95	. 95
Grade		0			0			0			0	
MC's (\%)	0	0	0	0	0	0		0	0	0 0	0	0
$\mathrm{SU} / \mathrm{RV}^{\prime} \mathrm{S}$ (\%)	0	0	0	0	0	0	0	0	,	0	0	0
$\mathrm{CV}^{\prime} \mathrm{s} \quad(\%)$	$\begin{array}{r} 0 \\ 1.1 \end{array}$	$\begin{array}{r} 0 \\ .1 \end{array}$	0 1.1	0 1.1	0 1.1	0 .1	1	. 1	1.1	0 1.1	. 1	0 1.1

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
Left Turn Major Road	5.50	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.50	3.30
Left Turn Minor Road	7.00	3.40

WorkSheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph)	436	378
Potential Capacity: (pcph)	833	891
Movement Capacity: (pcph)	833	891
Prob. of Queue-free State:	0.94	0.99
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph)	872	756
Potential Capacity: (pcph)	583	673
Movement Capacity: (pcph)	583	673
Prob. of Queue-free State:	0.96	0.99
TH Saturation Flow Rate: (pcphpl)	3400	3400
RT Saturation Flow Rate: (pcphpl)*	1700	1700
Major LT Shared Lane Prob. of Queue-free State:	0.94	0.98
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph)	1621	1656
Potential Capacity: (pcph)	123	117
Capacity Adjustment Factor due to Impeding Movements	0.92	0.92
Movement Capacity: (pcph)	114	108
Prob. of Queue-free State:	0.99	0.99
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph)	1617	1582
Potential Capacity: (pcph)	98	103
Major LT, Minor TH		
Impedance Factor:	0.91	0.92
Adjusted Impedance Factor:	0.93	0.94
Capacity Adjustment Factor due to Impeding Movements	0.93	0.88
Movement Capacity: (pcph)	91	90

Intersection Performance Summary

Movement		FlowRate v (pcph)	MoveCap Cm (pcph)	SharedCap Csh (pcph)	Avg.Total Delay	LOS	Delay By App
EB	L	6	$90>$		>		
EB	T	1	108	167	>23.5	$>\mathrm{D}$	23.5
EB	R	7	891 >		>	>	
WB	L	167	91 >	91	$>$ *	> F	
WB	T	1	114		$>$	>	*
WB	R	52	833		4.6	A	
NB	L	8	673		5.4	B	0.0
SB	L	26	583		6.5	B	0.2

Intersection Dela ${ }_{Y}^{*}=132.9$

* The calculated delay was greater than 999.9 sec .

File Name MONCOA2. HCO
Streets: (N-S) Monona Drive Major Street Direction.... NS Length of Time Analyzed... 60 (min)
Analyst.................... . . whp
Date of Analysis.......... . 11/26/97
Other Information......... 7-8 am option bor c moncoa2
Two-way Stop-controlled Intersection

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)

Left Turn Major Road	5.50	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.50	3.30
Left Turn Minor Road	7.00	3.40

Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1

WorkSheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph)	468	363
Potential Capacity: (pcph)	802	907
Movement Capacity: (pcph)	802	907
Prob. of Queue-free State:	0.91	0.99
Step 2: LT from Major Street	SB	NB
Conflicting Flows: (vph)	936	726
Potential Capacity: (pcph)	539	699
Movement Capacity: (pcph)	539	699
Prob. of Queue-free State:	0.80	1.00
TH Saturation Flow Rate: (pcphpl)	3400 1700	3400 1700
RT Saturation Flow Rate: (pcphpl)	1700	1700
Major LT Shared Lane Prob. of Queue-free State:	0.69	1.00
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph)	1632	1726
Potential Capacity: (pcph)	121	107
Capacity Adjustment Factor due to Impeding Movements	0.69	0.69
Movement Capacity: (pcph)	83	73
Prob. of Queue-free State:	0.84	0.99
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph)	1630	1540
Potential Capacity: (pcph)	96	110
Major LT, Minor TH		
Impedance Factor:	0.68 0.75	0.58 0.67
Adjusted Impedance Factor:	0.75	0.67
Capacity Adjustment Factor due to Impeding Movements	0.74	0.61
Movement Capacity: (pcph)	71	67

Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1 Page 3

Intersection Performance Summary

Mov	ement	FlowRate v (pcph)	MoveCap Cm (pcph)		SharedCap Csh (pcph)	Avg. To Delay		LOS		Delay By App
EB	L	3	67	>		>		>		
EB	T	1	73	$>$	201	$>$	19.3	>	C	19.3
EB	R	10	907	>		>		>		
WB	L	113	71	>		$>$		$>$		
WB	T	13	83	>	107	>		>	F	*
WB	R	70	802	>		>		>		
NB	L	2	699			5.2		B		0.0
SB	L	107	539			8.3		B		0.7

$$
\text { Intersection Delay }=117.4
$$

* The calculated delay was greater than 999.9 sec .

File Name MONCOP2. HCO Streets: ($N-S$) Monona Drive							(E-W) Coldspring				Ave.	
Major Street Direction.... NS												
Length of Time Analyzed... 60 (min)												
Analyst.................. whp												
Date of Analysis.......... 11/26/97												
Other Information........ 4-5 pm option b or c moncop2												
Two-way Stop-controlled Intersection												
	Northbound			Southbound			Eastbound			Westbound		
No. Lanes					$2<$	0	0	1	< 0	$0>$	$1<$	0
Stop/Yield			N			N			8	71	2	28
Volumes	6	798	79	28	752	1	3	2		. 91	. 91	. 91
PHF	. 91	. 91	. 91	. 91	. 91	. 91	. 91					
Grade		4			0			-2		0		0
MC's (\%)	0		0	0	- 0	0	0	0	0	0	0	0
SU/RV's (\%)	0			0	0 5	0	0	0	0	0	0	0
CV's (\%)	5			5 1.3	5 1.3	5 1.3	1	1	1			
PCE's	8	. 8	. 8	1.3								

Adjustment Factors

Vehicle	Critical	Follow-up
Maneuver	Gap (tg)	Time (tf)
$--1 e f t ~ T u r n ~ M a j o r ~ R o a d ~$	5.50	2.10
Right Turn Minor Road	5.50	2.60
Through Traffic Minor Road	6.50	3.30
Left Turn Minor Road	7.00	3.40

WorkSheet for TWSC Intersection

Step 1: RT from Minor Street	WB	EB
Conflicting Flows: (vph)	438	376
Potential Capacity: (pcph)	831	893
Movement Capacity: (pcph)	831	893
Prob. of Queue-free State:	0.96	0.99
Step 2: LT from Major street	SB	NB
Conflicting Flows: (vph)	877	753
Potential Capacity: (pcph)	580	676
Movement Capacity: (pcph)	580	676
Prob. of Queue-free State:	0.93	0.99
TH Saturation Flow Rate: (pcphpl)	3400	3400
RT Saturation Flow Rate: (pcphpl)	1700	1700
Major LT Shared Lane Prob. of Queue-free State:	0.90	0.99
Step 3: TH from Minor Street	WB	EB
Conflicting Flows: (vph)	1624	1664
Potential Capacity: (pcph)	122	116
Capacity Adjustment Factor due to Impeding Movements	0.89	0.89
Movement Capacity: (pcph)	108	103
Prob. of Queue-free State:	0.98	0.98
Step 4: LT from Minor Street	WB	EB
Conflicting Flows: (vph)	1624	1586
Potential Capacity: (pcph)	97	103
Major LT, Minor TH Impedance Factor:	0.87	0.87
Adjusted Impedance Factor:	0.90	0.90
Capacity Adjustment Factor due to Impeding Movements	0.89	0.87
Movement Capacity: (pcph)	87	89

Center For Microcomputers In Transportation HCS: Unsignalized Intersection Release 2.1

Page 3

Intersection Performance Summary

Movement		FlowRate v (pcph)	MoveCap Cm (pcph)	SharedCap Csh (pcph)	Avg.Total Delay	LOS	Delay By App
EB	L	3	89 >		>		
EB	T	2	103 >	222	> 17.3	> C	17.3
EB	R	9	893 >		$>$	>	
WB	L	86	87 >		$>$	F	
WB	T	2	108 >	116	> 324.4	> F	324.4
WB	R	34	831 >		>	>	
NB	L	6	676		5.4	B	0.0
SB	L	40	580		6.7	B	0.2
			tersectio	n Delay ${ }^{\text {a }}=$	18.7		

$$
\begin{array}{ll}
\text { onona Grove High School } & 12 / 19 / 97 \\
\text { AM peak hour } \\
\text { onlofam signal at lofty, access lofty only } &
\end{array}
$$

SIGNAL94/TEAPAC[V1 L1.4] - Summary of Parameter Values

Intersection Parameters

ETROAREA	NONCBD	
OSTTIME	3.0	
LEVELOFSERVICE	C	S
NODELOCATION	0	0

Approach Parameters

PPPLABELS			E	S
JRADES	0	-0	0	W
PEDLEVELS	0	0	0	0
ᄀARKINGSIDES	NONE	NONE	NONE	BOTH
ARKVOLUMES	0	0	0	2
BUSVOLUMES	0	0	0	0
RIGHTTURNONREDS	0	0	0	0

Movement Parameters

IOVLABELS	RT	TH	LT									
TOLUMES	8	724	64	22	1	71	200	745	8	10	1	4
WIDTHS	. 0	24.0	0	0	12.0	. 0	. 0	24.0	. 0	0	12.0	0
TANES	0	2	0	0	1	0	0	2	0	0	1	0
FTILIZATIONS	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
TRUCKPERCENTS	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
PEAKHOURFACTORS	. 77	. 77	. 77	. 77	. 77	. 77	. 77	. 77	. 77	. 77	77	7
IRRIVALTYPES	3	3	3	3	3	3	2	2	-	3	NO	NO
. ${ }^{\text {CTUUATIONS }}$	NO											
REQCLEARANCES	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
IINIMUMS	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
-DEALSATFLOWS	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
FACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0	0
DELAYFACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
JSTOPFACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	
GROUPTYPES	NORM											
SATURATIONFLOWS	0	2291	0	0	1465	0	0	319	0	0	1241	0

d Phasing Parameters

| JEQUENCES | 11 | ALL | | | NONE | NEADLAGS | NONE |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | NONE

onlofam signal at lofty, access lofty only
-IGNAL94/TEAPAC[V1 L1.4] - HCM Input Worksheet

Intersection \# 0-

Appr Grade \% Heavy Veh. Adj.Pkg Bus Pk.Hr.Factor Conf.Ped Actuated Arr. Type

-	\%	RT	TH	LT	Loc	Nm	Nb	RT	TH	LT	ed	RT	H	T	T		
N	. 0	2.0	2.0	2.0	NO	0	0	. 77	. 77	. 77	$0-$	N	N	N	3	3	3
E	. 0	2.0	2.0	2.0	NO	0	0	. 77	. 77	. 77	$0-$	N	N	N	3	3	3
S	. 0	2.0	2.0	2.0	NO	0	0	. 77	. 77	. 77	$0-$	N	N	N	2	2	2
W	. 0	2.0	2.0	2.0	BO	2	0	. 77	. 77	. 77	$0-$	N	N	N	3	3	3

SIGNAL94/TEAPAC[V1 L1.4] - HCM Volume Adjustment Worksheet

ippr -Mvt --	Mvt Vol vph	PHF	Flow Rate vph	Lane Group	Group Elow vph	No.of Lanes	Lane Util --	Adj Flow vph	Prop.of	
										RT
N-RT	8	77	10	--	0	0	1.00	0	. 00	. 00
$\stackrel{N}{\mathrm{~N}-\mathrm{RTH}}$	724	. 77	940	$\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	1033	2	1.05	1085	. 08	. 01
N -LT	64	. 77	83		0	0	1.00	0	. 00	. 00
E-RT	22	. 77	29	--	0	0	1.00	0	. 00	. 00
E-TH	1	. 77	1	LT + TH + RT	122	1	1.00	122	. 75	. 24
E-LT	71	. 77	92		0	0	1.00	0	. 00	. 00
S-RT	200	. 77	260	--	0	${ }^{\circ}$	1.00	0	. 00	. 00
S-TH	745	. 77	968	$\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	1238	2	1.05	1300	. 01	. 21
S-LT	8	. 77	10		0	0	1.00	0	. 00	. 00
W-RT	10	. 77	13		0	0	1.00	0	. 00	. 00
W-TH		. 77	1	$\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	19	1	1.00	19	. 26	. 68
W-LT	4	. 77	5		0	0	1.00	0	. 00	. 00

SIGNAL94/TEAPAC[V1 L1.4] - HCM Saturation Flow Adjustment Worksheet

1 p	Lane		No	Adjustment Factors									Adj
pr	Group	Ideal	of									Adj	flow
sh	Mvmes	Satfl	Lns	Lane Width	Heavy Vehs	Grade	Parkg	Bus Block	$\begin{aligned} & \mathrm{Ar} \\ & \mathrm{LOC} \end{aligned}$	Turn	Turn	Fact	vphg
.-	--	pcphg	-	Width	Vehs	Grade	Parkg						vphy
	T+TH+RT	1900	2	1.000	. 980	1.000	1.000	1.000	1.0	. 999	. 616	1.00	2291
$\cdots \mathrm{E}$	$\mathrm{T}+\mathrm{TH}+\mathrm{RT}$	1900	1	1.000	. 980	1.000	1.000	1.000	1.0	. 868	. 906	1.00	1465
S	T+TH+RT	1900	2	1.000	. 980	1.000	1.000	1.000	1.0	. 968	. 885	1.00	3192
	T+TH+RT	1900	1	1.000	. 980	1.000	. 890	1.000	1.0	. 808	. 927	1.00	1241

$$
\text { lonona Grove High School } \quad 12 / 19 / 97
$$

M peak hour
monlofam signal at lofty, access lofty only

SIGNAL94/TEAPAC[V1 L1.4] - HCM Supplemental LT-Factor Worksheet
Approach

Anput/Calculation	N-LT	$\begin{gathered} \mathrm{A}-\mathrm{LT} \end{gathered}$	S-LT.	W-LT
Cycle Length	60.0000	60.0000	60.0000	60.0000
; - Actual Green Time	42.0389	9.9611	42.0389	9.9611
g - Effective Green Time	43.0389	10.9611	43.0389	10.9611
go - Opp. Effective Green Time	43.0389	10.9611	43.0389	10.9611
J - Number of Lanes	2.0000	1.0000	2.0000	1.0000
"No - No. of Opp. Lanes (9-17)	2.0000	1.0000	2.0000	1.0000
vLT - Adjusted LT Flow Rate	83.0000	92.0000	10.0000	5.0000
?LT - Proportion of LT	. 0803	. 7541	. 0081	. 2632
? LTo - Prop. of Opp. LT (9-18)	. 0081	. 2632	. .08503	.7541 122.0000
vo - Adjusted Opp. Flow Rate	1300.0000	19.0000	1085.0000 3.0000	122.0000 3.0000
\%L - Lost Time	3.0000	3.0000	3.0000	
LTC - Left Turns per Cycle	1.3833	1.5333	. 1667	. 0833
Volc - Opp. Flow /Lane /Cycle	10.8333	. 3167	9.0417	2.0333
2po - Opposing Platoon Ratio	. 6667	1.0000	1.0000	1.0000
gf - First LT Effect. Green	10.8122	. 2330	29.9343	5.3187 .8173
qro - Opposing Queue Ratio	. 5218	. 8173	. 2827	3.8173
jq - Opp. Queue Effect. Green	11.8901	.0000 10.7281	4.3172 13.1046	3.8532 5.6423
Ju - Unsaturated Effect. Green	31.1488	10.7281 .8631	13.1046 .1969	5.6423 .7987
fs - LT Satur. Factor (9-17)	.0625 .6168	. 8631	. 19572	. 2632
OL - Proportion of LT $(9-17)$. 6168	. 0000	. 0000	. 0000
PTHo - Prop. TH in Opp. (9-18)	. 9919	. 7368	. 9197	. 2459
EL1 - TH Equivalent for LT	16.0000	1.1402	16.0000	1.6295
3L2 - Opp. TH Equiv. (9-18)	. 5400	. 0000	. 0000	. 2300
LEmin - Minimum Value for fLT	. 0751	. 3201	. 8594	. 9268
fm - LT Factor for LT (9-17)	. 3218	. 9064	. 8594	. 9268
ELT - LT Factor for Lane Group	. 6159	. 9064	. 8847	. 9268

3IGNAL94/TEAPAC[V1 L1.4] - HCM Capacity Analysis Worksheet

Ap	Lane	LT	Adj	Adj	Flow	Green	Lane	V/C	Crit
pr	Group	Phase	Flow	Satfl	Ratio	Ratio	Group	Ratio	Lane
\& 2 h	Mvts	Type	Rate	Rate	v/s	g/C	Capac	v/c	Grp
			vph	vphg	--		vph		

-vC Lvl:LOS		B+			B			B+			${ }^{\text {B }}$		B+
Deg Sat:v/c	. 00	. 53	. 00	. 00	. 43	. 00	. 00	. 53	. 00	. 00	03	. 00	9^{51}
vg Del:s/v	. 0	8.6	. 0	. 0	18.0	. 0	. 0	8.5	. 0	. 0	14.0	.	9.5
ot Del:min	0	32	0	0	16	0	0	36	0	0	1	0	85
\# Stops:veh	0	137	0	0	41	0	0	154	0	0	2	0	334
ax Que:veh	0	13	0	0	5	0	0	14	0	0	0	0	32
max Que: ft	0	160	0	0	119	0	0	181	0	0	25	0	181

.PPR TOTALS Param:Units	N Approach	E Approach	S Approach	W Approach	Int Total
==========		208	1014	13	2133
djVol: vph	898	208			
Svc Lvl:LOS	B+	B	B+	${ }^{\text {B }}$	B+
eg Sat:v/c	. 53	.43	. 53	. 03	
mvg Del:s/v	8.6	18.0	8.5	14.0	9.5
Tot Del:min	32	16	36 154	2	334
Stops: veh	137	41	154	2	334
Max Que:veh	13	5	14	0	32
*ax Que: ft	160	119	181	25	181

Monona Grove High School

?M peak hour
nonlofpm lofty pm with access only at lofty

3IGNAL94/TEAPAC[V1 LI.4] - Evaluation of Intersection Performance

| $\mathrm{G} / \mathrm{C}=.560$ | $\mathrm{G} / \mathrm{C}=.306$ |
| :--- | :--- | :--- |
| $\mathrm{G}=33.6^{\prime \prime}$ | $\mathrm{G}=18.4^{\prime \prime}$ |
| $\mathrm{Y}+\mathrm{R}=4.00^{\prime \prime}$ | $\mathrm{Y}+\mathrm{R}=4.0^{\prime \prime}$ |
| $\mathrm{OFF}=.0 \%$ | $\mathrm{OFF}=62.7 \%$ |$|$

MVMT TOTALS	N Approach			E Approach			S Approach			WRT	Approach		Int Total
Param:Units	RT	TH	LT	RT	TH	LT	RT	TH	LT		TH	LT	
- AdjVol: vph									8	7	1	5	2133
= Adjvol: vph	$0 / 0$	868	26 $0 / 0$	49 $0 / 0$	12/1	158 $0 / 0$	85 $0 / 0$	921 $24 / 2$	0/0	0/0	12/1	$0 / 0$	
Wid/Ln:ft/\#	0/0	24/2	0/0	$0 / 0$	12/1	0	0/0	24/2	0	0	12/1	0	
g/C Rqd@C: $\%$ g/C Used: $\%$	0	33	0	0	18	0	0	32	0	0	32	0	
g/C Used: \%	0	58	0	0	32	0	0	1929	0	0	397	0	4505
SV @E: vph	0	1696	0	0	483	0	0	1929	0	0	397	0	4505

Monona Grove High School	$12 / 19 / 97$
π M peak hour	
oncoam2 option b or c	$15: 20: 15$

IGNAL94/TEAPAC[V1 L1.4] - Summary of Parameter Values

Intersection Parameters

ETROAREA	NONCBD	
LOSTTIME	3.0	
TJEVELOFSERVICE	C	S
ODELOCATION	0	0

Approach Parameters

PPRLABELS	N	E	S	W
GRADES	-0	0	0	0
MEDLEVELS	0	0	0	0
'ARKINGSIDES	NONE	NONE	NONE	BOTH
PARKVOLUMES	0	0	0	2
BUSVOLUMES	0	0	0	0
IGHTTURNONREDS	0	0	0	0

Movement Parameters

IOVLABELS	RT	TH	LT									
VOLUMES	2	724	63	49	9	79	191	745	2	8	$1{ }^{1}$	2
WIDTHS	. 0	24.0	. 0	. 0	12.0	. 0	. 0	24.0	. 0	0	12	0
AANES	0	2	0	0	1	0	0	2	0	0	1	0
UTILIZATIONS	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	.00	. 00	. 00
TRUCKPERCENTS	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
'EAKHOURFACTORS	. 77	. 77	. 77	. 77	. 77	. 77	. 77	. 77	77	. 77	77 3	7
IRRIVALTYPES	3	3	3	3	3	3	3	3	3	3		3
ACTUATIONS	NO											
ZEQCLEARANCES	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
IINIMUMS	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0
IDEALSATFLOWS	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
FACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	0	0
JELAYFACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
- NSTOPFACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
GROUPTYPES	NORM											
SATURATIONFLOWS	0	2308	0	0	1493	0	0	337	0	-	5	0

Phasing Parameters

SEQUENCES	11	ALL		
PERRMISSIVES	NO	NO	NO	NO
OVERLAPS	YES	YES	YES	YES
IYCLES	60	120	15	
\&REENTIMES	39.28	12.72		
YELLOWTIMES	4.00	4.00		
IRITICALS	2	5		
EXCESS	0			

LEADLAGS	NONE	NONE
OFFSET	.00	1
PEDTIME	.0	0

IGNAL94/TEAPAC[V1 L1.4] - HCM Input Worksheet Intersection \# 0 -

Area Location Type: NONCBD

Appr Grade \% Heavy Veh. Adj. Pkg Bus Pk.Hr.Factor Conf. Ped Actuated Arr. Type

AM peak hour
oncoam2 option b or c
SIGNAL94/TEAPAC[V1 L1.4] - HCM Volume Adjustment Worksheet

nppr	Mvt		Flow	Lane	Group	No.of	Lane	Adj	Prop	of
-Mvt	Vol	PHF	Rate	Group	Flow	Lanes	Util	Flow	LT	RT
--	vph	--	vph		vph			vph	--	

N-RT	2	. 77	3	--	0	0	1.00	0	. 00	. 00
$\mathrm{N}-\mathrm{TH}$	724	. 77	940	$\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	1025	2	1.05	1076	. 08	. 00
N -LT	63	. 77	82		0	0	1.00	0	. 00	. 00
E-RT	49	. 77	64	--	0	$\$ 0$	1.00	0	. 00	. 00
E-TH	9	. 77	12	$\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	179	1	1.00	179	. 58	. 36
E-LT	79	. 77	103	--	0	0	1.00	0	. 00	. 00
S-RT	191	. 77	248	--	0	0	1.00	0	. 00	. 00
S-TH	745	. 77	968	$\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	1219	2	1.05	1280	. 00	. 20
S-LT	2	. 77	3	--	0	0	1.00	0	. 00	. 00
W-RT	8	. 77	10	--	0	0	1.00	0	. 00	. 00
W-TH	1	. 77	1	$\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	14	1	1.00	14	. 21	. 71
W-LT	2	. 77	3	--	0	0	1.00	0	. 00	. 00

TIGNAL94/TEAPAC[V1 L1.4] - HCM Saturation Flow Adjustment Worksheet

Ap	Lane		No	Adjustment Factors									Adj
$n \mathrm{r}$	Group	Ideal	of								Left	Adj	flow
:h	Mvmts	Satfl pcphg	Lns	Lane Width	Heavy Vehs	Grade	Parkg	Block	$\begin{gathered} \text { Ar } \\ \text { LOC } \end{gathered}$	Turn	Turn	Fact	vphg
	T+TH+RT	1900	2	1.000	. 980	1.000	1.000	1.000	1.0	1.000	. 620	1.00	2308
	T+TH+RT												
	T+TH+RT	1900	1	1.000	. 980	1.000	1.000	1.000	1.0	. 852	. 941	1.00	1493
	T+TH+RT	1900	2	1.000	. 980	1.000	1.000	1.000	1.0	. 969	. 934	1.00	3372
	T+TH+RT	1900	1	1.000	. 980	1.000	. 890	1.000	1.0	. 804	. 934	1.00	1245

Ionona Grove High School
12/19/97
AM peak hour
moncoam2 option b or c
SIGNAL94/TEAPAC[V1 LI.4] - HCM Supplemental LT-Factor Worksheet

Input/Calculation	Approach			
	N-LT	E-LT	S-LT	W-LT
			60.0000	60.0000
こ - Cycle Length	60.0000	60.0000	39.2771	12.7229
J - Actual Green Time	39.2771	12.7229	40.2771	13.7229
g - Effective Green Time	40.2771	13.7229 13.7229	40.2771	13.7229
Jo - Opp. Effective Green Time	40.2771 2.0000	13.7229 1.0000	2.0000	1.0000
N - Number of Lanes	2.0000 2.000	1.0000	2.0000	1.0000
No - No. of Opp. Lanes (9-17)	2.0000 82.0000	103.0000	3.0000	3.0000
vLT - Adjusted LT Flow Rate	82.0000	103.000	. 0025	. 2143
PLT - Proportion of LT	. 0800	. 2754	. 0800	. 5754
PLTo - Prop. of Opp. LT (9-18)	. 0025	. 2143	1076.0800	179.0000
vo - Adjusted Opp. Flow Rate	1280.0000	14.0000	1076.0000 3.0000	179.0000 3.0000
tL - Lost Time	3.0000	3.0000	3.0000	3.0000
TC - Left Turns per Cycle	1.3667	1.7167	. 0500	. 0500
Volc - Opp. Flow /Lane / Cycle	10.6667	. 2333	8.9667	2.9833
Rpo - Opposing Platoon Ratio	1.0000	1.0000	1.0000	1.0000 8.1645
gf - First LT Effect. Green	10.0296	. 8010	32.4347	8.1645 .7713
qro - Opposing Queue Ratio	. 3287	. 7713	.3287 5.4080	5.6307
gq - Opp. Queue Effect. Green	7.8816	12.9219	7.8424	5.5584
gu - Unsaturated Effect. Green	30.2474	$\begin{array}{r}12.9219 \\ \hline 8662\end{array}$. 2025	. 7631
fs - LT Satur. Factor (9-17)	. 0750	. 8662	. 0187	. 2143
PL - Proportion of LT (9-17)	. 5560	. 5754	. 0187	. 0000
Sn - Max. Opp. Vehicles (9-18)	. 0000	. 0000	. 0000	. 4246
PTHo - Prop. TH in Opp. (9-18)	. 9975	. 7857	.9200 16.0000	.4246 1.9002
EL1 - TH Equivalent for LT	16.0000	1.1165 .0000	16.0000	. 0000
EL2 - Opp. TH Equiv. (9-18)	. 0000	. 2296	. 0506	. 1770
fmin - Minimum Value for fLT	. 0773	. 22408	. 9573	. 9345
fm - LT Factor for LT (9-17)	. 3294	. 9408	. 95336	. 9345
fLT - LT Factor for Lane Group	. 6197	. 9408	. 9336	. 934

SIGNAL94/TEAPAC[V1 L1.4] - HCM Capacity Analysis Worksheet
Ap Lane. LT Adj Adj Flow Green Lane V/C Crit

rr	Group	Phase	Flow	Satfl	Ratio	Ratio	Group	Ratio	Lane
ch	Mvts	Type	Rate	Rate	v/s	g/C	Capac	c	p
	--		vph	vphg	- -				
	LT+TH+R		1076	2308	. 466	. 671	1549	. 695	
	LT $+\mathrm{TH}+\mathrm{R}$		179	1493	. 120	. 229	341	. 525	
	T+TH+R		1280	3372	. 380	. 671	2264	. 565	
	LT+TH+R		14	1245	. 011	. 229	285	. 049	
- ycle Length, C 60 sec ost Time Per Cycle, L				. 0 sec		Sum (v	$\begin{aligned} & (s)= \\ & \mathrm{Xc}= \end{aligned}$	$\begin{aligned} & .586 \\ & .651 \end{aligned}$	

Monona Grove High School
M peak hour
moncoam2 option b or c

SIGNAL94/TEAPAC[V1 L1.4] - HCM Level-of-Service Worksheet

ip	Lane	ol	Green	Unif	Delay	Lane	Cal	Incr	Lan	Lan		
ir	Group	Ratio	Ratio	Delay	Fact	Group	Term	Delay	up	Grp		Ios
ch	Mvts	v/c	g/C	d1	DF	Capac	m	d2	Delay	LOS		
	--			$\mathrm{sec} / \mathrm{v}$		vph		$\mathrm{sec} / \mathrm{v}$	$\mathrm{sec} / \mathrm{v}$		ec/v	

$\mathrm{N}-\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$. 695	. 671	4.6	1.00	1549	16	. 96	5.6	B+	5.6	B+
E-LT+TH+RT	. 525	. 229	15.4	1.00	341	16	1.20	16.6	C+	16.6	C+
S-LT+TH+RT	. 565	. 671	4.0	1.00	2264	16	. 25	4.2	A	4.2	A
W-LT+TH+RT	. 049	. 229	13.7	1.00	285	16	. 00	13.7	B	13.7	B
Cycle= 60" [nt Total	. 614									5.7	B+

Monona Grove High School

M peak hour
1oncoam2 option b or c
;IGNAL94/TEAPAC[V1 L1.4] - Evaluation of Intersection Performance

r/C Used: \%	0	67	0	0	23	0		67	0	0	23	0	4439
SV @E: vph	0	1549	0	0	341	0	0	2264	0	0		0	4439
ivc Lvi:LOS		B+			C+			A			B		B+
veg Sat:v/c	. 00	. 69	. 00	. 00	. 52	. 00	. 00	. 56	. 00	. 00	. 05	. 00	8.1
Avg Del:s/v	. 0	7.9	. 0	. 0	23.6	. 0	- 0	6.0	- 0	. 0	18.4	- 0	8.1
'ot Del:min	0	35	0	0	18	0	0	32	0	0	1	0	878
\therefore Stops:veh	0	166	0	0	39	0	0	170	0	0	3	0	378
Tax Que:veh	0	12	0	0	5	0	0	14	0	0	0	0	31
lax Que: ft	0	149	0	0	116	0	0	177	0	0	25	0	177
PPR TOTALS													Int
ふaram:Units		Appro			Approa			Approa			Appro		Total
$=========$ djVol: vph		1076			179			1280			14		2549
Svc Lvl:LOS		B+			C+			A			B 05		B+
neg Sat:v/c.		. 69			.52			- 56			18.4		8.1
ivg Del:s/v		7.9			23.6			6.0			18.4		86
r'ot Del:min		35			18			32 170			3		378
\# Stops:veh		166			39			170			3		378
lax Que:veh		12			5			14			0		31
Max Que: ft		149			116	+		177			25		177

```
Monona Grove High School
PM peak hour
```

IGNAL94/TEAPAC[V1 L1.4] - Summary of Parameter Values
Intersection Parameters

ETROAREA	NONCBD	
EOSTTIME	3.0	
LEVELOFSERVICE	C	S
ODELOCATION	0	0

Approach Parameters

PPLABELS	N	E	S	W
GRADES	. 0	. 0	0	0
PEDLEVELS	0	0	0	0
ARKINGSIDES	NONE	NONE	NONE	BOTH
- ARKVOLUMES	0	0	0	2
BUSVOLUMES	0	- 0	0	0
IGHTTURNONREDS	0	0	0	0

Movement Parameters

IOVLABELS	RT	TH	LT									
VOLUMES	1	752	28	28	2	71	79	798	6	8	2	3
WIDTHS	. 0	24.0	. 0	. 0	12.0	. 0	. 0	24.0	. 0	. 0	12.0	0
ANES	0	2	0	0	1	0	0	2	0	0	1	0
TIILIZATIONS	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00	. 00
TRUCKPERCENTS	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0	2.0
TEAKHOURFACTORS	. 91	. 91	. 91	. 91	. 91	. 91	. 91	. 91	. 91	. 91	. 91	. 91
RRIVALTYPES	3	3	3	3	3	3	3	3	3	3	3	3
ĀCTUATIONS	NO											
REQCLEARANCES	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0	4.0
IINIMUMS	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0	5.0 .	5.0	5.0	5.0
IDEALSATFLOWS	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
FACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
IELAYFACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
ISTOPFACTORS	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
GROUPTYPES	NORM											
9ATURATIONFLOWS	-	2851	0	0	1499	0	0	3359	0	0	1288	0

Phasing Parameters

;EQUENCES	11	ALL					
NERMISSIVES	NO	NO	NO	NO	LEADLAGS	NONE	NONE
OVERLAPS	YES	YES	YES	YES	OFFSET	. 00	
:YCLES	60	90	15		PEDTIME	. 0	0
?REENTIMES	39.44	12.56					
YELLOWTIMES	4.00	4.00					
SRITICALS	2	5					
:XCESS	0						

'M peak hour
oncopm2 option b or c
:IGNAL94/TEAPAC[V1 L1.4] - HCM Input Worksheet
Intersection \# 0- Area Location Type: NONCBD

	752 24.0 2 1	$\begin{array}{r} 28 \\ .0 \\ 0 \\ 1 \end{array}$	-	28	K	 /i
$3 \quad .0$		+	/	71	0	
212.01		\backslash	1	/		
LOSTTIME $=3.0 \mathrm{sec}$.		6 0 0	798 24.0 $\$ 2$	79 .0 0	Phasing:	SEQUENCE 11 PERMSV N N N N N OVERLP Y Y Y Y LEADLAG LD LD

$$
\begin{array}{ll}
\text { Nonona Grove High School } & 12 / 19 / 97 \\
\text { PM peak hour }
\end{array}
$$

CIGNAL94/TEAPAC[V1 L1.4] - HCM Volume Adjustment Worksheet

Appr	Mvt		Flow Rate	Lane Group	Group Flow	No. of Lanes	Lane Util	$\begin{array}{r} \text { Adj } \\ \text { Flow } \end{array}$	Prop LT	of
\ldots	Vol	PHF	Rate vph	Group	Flow vph	Lanes	Util	$\begin{aligned} & \text { Flow } \\ & \text { vph } \end{aligned}$	LT	R
N-RT	1	. 91	1	--	0	0	1.00	0	. 00	. 00
$\mathrm{N}-\mathrm{TH}$	752	. 91	826	LT+TH+RT	- 858	2	1.05	901	. 04	. 00
N -LT	28	. 91	31	--	0	0	1.00	0	. 00	. 00
E-RT	28	. 91	31	--	0	0	1.00	0	. 00	. 00
E-TH	2	. 91	2	$\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	111	1	1.00	111	. 70	28
E-LT	71	. 91	78	--	0	0	1.00	0	. 00	. 00
S-RT	79	. 91	87	--	0	0	1.00	0	. 00	. 00
S-TH	798	. 91	877	LT+TH+RT	- 971	2	1.05	1020	. 01	. 09
S-LT	6	. 91	7	--	0	0	1.00	0	. 00	. 00
W-RT	8	. 91		--	0	0	1.00	0	. 00	. 00
W-TH	2	. 91	2	LT+TH+RT	- 14	1	1.00	14	. 21	. 64
W-LT	3	. 91	3	--	0	0	1.00	0	. 00	. 00

IGNAL94/TEAPAC[V1 L1.4] - HCM Saturation Flow Adjustment Worksheet

Ap	Lane		No	Adjustment Factors									Adj
$n \mathrm{r}$	Group	Ideal	of										Sat-
! h	Mvmes	Satfl	Lns	Lane	Heavy			Bus	${ }^{\text {Ar }}$	Right	Turn	Fact	vohg
--	--	pcphg	-	Width	Vehs	Grade	Parkg	Block	Loc				
	$\mathrm{T}+\mathrm{TH}+\mathrm{RT}$	1900	2	1.000	. 980	1.000	1.000	1.000	1.0	1.000	. 765	1.00	2851
	T+TH+RT	1900	1	1.000	. 980	1.000	1.000	1.000	1.0	. 862	. 933	1.00	1499
YS	T + TH + RT	1900	2	1.000	. 980	1.000	1.000	1.000	1.0	. 987	. 914	1.00	3359
	T+TH+RT	1900	1	1.000	. 980	1.000	. 890	1.000	1.0	. 813	. 955	1.00	1288

onona Grove High School
12/19/97
PM peak hour
15:21:54
moncopm2 option b or c

SIGNAL94/TEAPAC[V1 L1.4] - HCM Supplemental LT-Factor Worksheet

Input/Calculation	N-LT	$\mathrm{E}-\mathrm{LT}$	S-LT	W-LT
Cycle Length	60.0000	60.0000	60.0000	60.0000
¢ - Actual Green Time	39.4418	12.5582	39.4418	12.5582
q - Effective Green Time	40.4418	13.5582	40.4418	13.5582
- Opp. Effective Green Time	40.4418	13.5582	40.4418	13.5582 1.0000
\therefore - Number of Lanes	2.0000	1.0000	2.0000	1.0000 1.0000
No - No. of Opp. Lanes (9-17)	2.0000	1.0000	2.0000 7.0000	1.0000 3.0000
LT - Adjusted LT Flow Rate	31.0000	78.0000	7.0000 .0072	3.0000 .2143
LT - Proportion of LT	. 0361	. 7027	. 0072	. 2143
PLTo - Prop. of Opp. LT (9-18)	. 0072	. 2143	. .0361	. .7027
ro - Adjusted Opp. Flow Rate	1020.0000	14.0000	901.0000	111.0000
L - Lost Time	3.0000	3.0000	3.0000	3.0000
LTC - Left Turns per Cycle	. 5167	1.3000	. 1167	. 0500
Olc - Opp. Flow/Lane / Cycle	8.5000	. 2333	7.5083	1.8500
. po - Opposing Platoon Ratio	1.0000	1.0000	1.0000	1.0000
gf - First LT Effect. Green	19.7710	1.5543	29.6493	8.0200
Tro - Opposing Queue Ratio	. 3260	. 7740	. 3260	.7740 3.0193
(q - Opp. Queue Effect. Green	4.7323	. 0000	3.5290 10.7925	3.0193 5.5382
gu - Unsaturated Effect. Green	20.6708	12.0039	10.7925	5.5382
fs - LT Satur. Factor (9-17)	. 2375	. 8662	. 3119	. 8125
L - Proportion of LT (9-17)	. 1914	. 7027	. 0443	. 2143
it - Max. Opp. Vehicles (9-18)	. 0000	. 0000	. 0000	. 2973
PTHo - Prop. TH in Opp. (9-18)	. 9928	. 7857	. .9639	.2973 1.5773
SL1 - TH Equivalent for LT	16.0000	1.1165	11.0500	1.5773 .0000
;L2 - Opp. TH Equiv. (9-18)	. 0000	. 0000	. 0000	. 1790
fmin - Minimum Value for flT	. 0589	. 2512	. 0516	. 1795
${ }^{\text {s m - LT }}$ Factor for LT (9-17)	. 6209	. 9330	. 9178	. 9550
:LT - LT Factor for Lane Group	. 7655	. 9330	. 9139	. 9550

3IGNAL94/TEAPAC[V1 L1.4] - HCM Capacity Analysis Worksheet

Ip	Lane	LT	Adj	Adj	Flow	Green	Lane	V/C	Crit
Mr	Group	Phase	Flow	Satfl	Ratio	Ratio	Group	Ratio	Lane
ch	Mvts	. Type	Rate	Rate	v/s	g/C	Capac	v/C	Grp
$:--$	--	--	vph	vphg	--	--	vph	--	-

$\mathrm{N}-\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	901	2851	. 316	. 674	1922	. 469	
$\mathrm{E}-\mathrm{L}$ T $+\mathrm{TH}+\mathrm{RT}$	111	1499	. 074	. 226	339	. 327	
$\mathrm{S}-\mathrm{LT}+\mathrm{TH}+\mathrm{RT}$	1020	3359	. 304	. 674	2264	. 451	
W-LT+TH+RT	14	1288	. 011	. 226	291	. 048	
ycle Lengt ost Time	$\begin{aligned} & 0 \mathrm{sec} \\ & \mathrm{e}, \mathrm{~L} \end{aligned}$	sec		Sum	$\begin{aligned} & = \\ & c= \\ & c \end{aligned}$	$\begin{array}{r} .390 \\ .433 \end{array}$	

onona Grove High School 12/19/97
M peak hour moncopm2 option b or c

SIGNAL94/TEAPAC[V1 LI.4] -. HCM Level-of-Service Worksheet

Monona Grove High School r

12/19/97
'M peak hour
aoncopm2 option b or c
;IGNAL94/TEAPAC[V1 L1.4] - Evaluation of Intersection Performance

$3 \quad\left|\begin{array}{l|l|l|}\mathrm{G} / \mathrm{C}=.657 & \mathrm{G} / \mathrm{C}=.209 \\ \mathrm{G}=39.4^{\prime \prime} & \mathrm{G}=12.6^{\prime \prime} \\ \mathrm{Y}+\mathrm{R}=4.0^{\prime \prime} & \mathrm{Y}+\mathrm{R}=4.0^{\prime \prime} \\ \mathrm{OFF}=.0 \% & \mathrm{OFF}=72.4 \%\end{array}\right|$

MVMT TOTALS Param:Units =========== AdjVol: vph Wid/Ln:ft/\#于/C Rqd@C:\% J/C Used: \% SV @E: vph

N Approach			E Approach			S Approach			WRT	Approach		Int Total
RT	TH	LT	RT	TH	LT	RT	TH	LT		TH	LT	
1	867	33	31	2	78	91	922	7	9	2	3	2046
$0 / 0$	24/2	0/0	0/0	12/1	0/0	0/0	24/2	0/0	$0 / 0$	12/1	0/0	
0	34	0	0	11	0	0	33	0	0	3	0	
0	67	0	0	23	0	0	67	0	0	23	-	
0	1922	0	0	339	0	0	2264	0	0	291	0	4816

-vc Lvi:LOS		A			B			A			B		
Deg Sat:v/c	. 00	. 47	. 00	. 00	. 33	. 00	. 00	. 45	. 00	. 00	. 05	. 00	
vg Del:s/v	. 0	5.4	. 0	. 0	21.2	. 0	. 0	5.1	. 0	. 0	18.5	. 0	6.2
ot Del:min	0	20	0	0	10	0	0	22	0	0	1	0	53
\# Stops:veh	0	107	0	0	23	0	0	119	0	0	3	0	252
ax Que:veh	0	10	0	0	3	0	0	11	0	0	0	0	24
max Que: ft	0	124	0	0	72	0	0	140	0	0	25	0	140
PPR TOTALS													Int Total
Param:Units		pro			Approa			pproa			Appro		
djVol: vph		901			111			1020			14		2046
Sve Lvl:LOS		A			B			A			B		A
eg Sat:v/c		. 47			.33			. 45			. 05		.45
..vg Del:s/v		5.4			21.2			5.1			18.5		6.2
Tot Del:min		20			10			22			1		53
\cdots Stops:veh		107			23			119			3		252
Max Que:veh		10			3			11			0		24
Max Que: ft		124			72			140			25		140

Indicate North With Arrow

\qquad

1995

SHOW FOR EACH ACCIDENT

ROM 991
and COLDSFRNE

SYMBOL	COLISTON	SMMBOL	COLLISION	SHOW FOR EACH ACCIDENT
$\begin{gathered} \longleftrightarrow \longrightarrow \\ \stackrel{\square}{\square} \\ \square \\ 0 \end{gathered}$	Moving Vehicle Backing Vehicle Pedestrian Parked Vehicle Fixed Object Fatal Accident Injury Accident	$\begin{aligned} & \stackrel{K}{\leftarrow} \\ & \underset{\sim}{\leftarrow} \\ & \leftarrow \sigma \\ & \longrightarrow \downarrow \\ & \leftarrow \end{aligned}$	Rear End Head On side Swipe Off Road Left Turn Right Angle	1. Date and Time 2. Weather and Road Surface (if unusual condition existec.
INTERSECTON.MONONA DKUL and LOFT				
FROM TO				
BY		DATE		

๙リローフロル トロールぐー」 \rightarrow ーロールュコ《uルロルフロ
$\rightarrow ロ \vdash \circlearrowleft O \approx 0$
$\propto 0 \times 0 \cup O=0$
$\propto 0<0 エ 0 \propto$
$\propto ロ \ll>$ แ๙ト zトルフエロコロ

वールルームぐ
$<\vdash ー ル \vdash \propto$《トエアフ \rightarrow ートローロル
\cdots ルトローロ
くuルのーロロ

ェロロール
$\propto \circ$＿I $\boldsymbol{x} \alpha$

○てんーム
OスエエンOーロ
 ○ネエアク
0∞

北安完

$\vdash ロ ル ひ ユ レ ー N ~$

Q $\quad>\infty 00 \mathrm{O}$
$\vdash \propto>-\infty \propto \propto N$
$\vdash \propto u ย マ \vdash ゥ \leftarrow$
$\Delta \propto>\propto 0$ O－
$\vdash \propto>\rightarrow 0 ゅ \propto \sigma$
1 ローフル工

ェュャレローー
＜uソロー＞の，
トロトル＜ールー」 トロールン？氏uロロッフロ

$\propto 0 \propto 000=0$
$\propto O \ll エ ロ ェ$
$\simeq 0<0>山 \propto ロ$ マトルンエロコェ

ぶかーの
《ッエア
$\rightarrow z-0 \rightarrow \infty$

くルUローロル
$\therefore ロ \square \rightarrow \infty$

$0 \geq$ ロー ○エエコンローの $0 \geq エ ア ン \propto の ~$

○スエアン
$0 \infty \omega$

 응 かのயいぃ

 00000000000000000000000000000000000000

号

AN ACCIDENT HAPPENS ON A STREET(ONSTR) OR HIGHWAY (ONHWY) A GIVEN DISTANCE (INTDIS) AND A GIVEN DIRECTION(INTDIR)
INTDIS= IS IN HUNDREDTHS OF A MILE $50=.5$ MILE, $5=.05$ MILE
ACCDLOC ACCIDENT LOCATION INT = INTERSECTION, NON= NON-INTERSECTION
ACCDTYPE ACCIDENT TYPE M.V.I.T = MOTOR VEHICLE IN TRANSPORT OTHR RDWY = M.V.I.T IN ANOTHER ROADWY
OBJ NT FX = OTHER OBJECT NOT FIXED IMPT ATTN = IMPACT ATTTTENUATOR GEOMETRICS FT = FLAT HL = HILL CU = CURVE FT = FLAT SH ORVRDOIN SL/STP=SLOWING OR STOPPING LG PRK= LEGALLY PARKED NO PASSING ZONE OVT LT=OVERTURN LEFT RTOR=RIGHT TURN ON RED
$0 \propto>\infty ロ O N$

```
ma>-nロm\proptoN
```

<uいロー>ロール
トOトル<゙ー」

α UOO>
- $-\omega 0=0$
$\propto 0<0 \cup O \geq 0$
$\propto 0 \propto 0 \pm 0 \propto$
$\propto 0<0>\omega \propto ト$
zトル>エロコロ
くい
くーのーロ
《ーエコン
-でローの
ースーローロ
<
のaOm@
$\propto \propto z \Sigma \propto \alpha$
$0 \geq ル ル ロ$ 0 マエエンローロ
$0 \geq エ ア>\propto 0$.
－ニエコン
Oゅ்

95090440760

NN
N
M
M
m
N
N
0
0
テはO
 \qquad TRN

訔爫㟶 후눈

$$
\begin{aligned}
& 2 \pi-\infty \\
& 3=3 \infty
\end{aligned}
$$ \vec{u}

 ゆ心心元

2

玄
 ㄴ

～甬品甾面
OOOOOOONWOONOOROROOFMLONMMOOONONONNOOO

 ．．．． | \circ |
:---
0
0
U

花
 ω
N

山
$\stackrel{N}{O}$
$0 \propto>\propto 00 \mathrm{~N}$
$\mapsto \infty>-\infty-\infty N$

ロッフォロロー
$1-\propto>\rightarrow 0 \rightarrow n-$ ーOトフயエ

ェスヘuOーـ
＜uルロトンロール ーOトルィトーい $\mathrm{HO}+\mathrm{mz}$

$\rightarrow \omega \vdash$－OZO
$\propto 0<0 \cup 0 \geq 0$
$\propto 0<0 \pm 0 \propto$
$\propto O<\square>\omega \propto \leftarrow$
マトい＞エロコロ
《ーロルーコ《ーロ
$\alpha \vdash \backsim \vdash \propto$
《ーエエン
$\cdots \geq ロ ロ ー \infty$
$\mapsto z \vdash ロ ッ \propto$
くUUローOル
$๙ ロ ロ ー ๗$
$\propto \square \geq \Sigma \infty \propto$

$0 \geq \omega+\infty$
 Oスエエフローの

OZエエフロロ $0 \geq x>$ Onn

 NNNNNNNNNNNNNNNNNNNNNNNMNNNNNNNNNNNNN

 －O下OOOFOOONOFOOONONOOOOOOOOONOO－OOFOOO Z

高 高

$$
\simeq
$$

NOOOOOOOTNONOTONOTOOOOONTOOOOOONOOOMN

\circ
0
0
0
0

品

ロロ＞ロロロー
＜uソローフロール ーOトル＜－－ トロールス $氏 ひ \cup ロ ル>\infty$
－ 1 ールス

ヘO＜ローロスo $\propto 0 \ll ロ エ ロ ッ$
$\simeq O<0>\boldsymbol{\sim}$ ストルフエロコッ くールルーム

くーツトロ
くッエエン $ッ マ ト ロ ッ ツ$
$\rightarrow ユ \vdash ロ ッ \propto$
＜uOOMOU

Ozわトロ －マエエンーローの ○スエエンロロ

○スエアプ

0∞
\qquad SI

心の
\qquadNNMNNさNNNNNNNNNトOトルムト」 1 －トOルmzッ 下ONONONOFOONOOO๙0はロエロ๙
$\propto 0<10>w ロ ト$

$$
z r-\gg 0 \leq \propto
$$

$$
\text { < } \rightarrow \text { ・ー - }
$$ぐトエ3フ\rightarrow 二小ロールMートローロ《uローOU$\propto ロ ロ ー ル$$\propto \alpha \geq \Sigma \infty \propto$

○ユぃト๙$0 シ エ ア フ ロ ー ロ ~$$0 \geq エ=\infty \square$○エエコン
－∞5251420489
\qquad倍 2
AN ACCIDENT HAPPENS ON A STREET（ONSTR）OR HIGHWAY（ONHWY）A GIVEN DISTANCE（INTDIS）AND A GIVEN DIRECTION（INTDIR）
FROM A STREET（ATSTR）OR HIGHWAY（ATHWY） INTDIS＝IS IN HUNDREDTHS OF A MILE $50=.5$ MILE， $5=.05$ MILE ACCDLOC ACCIDENT LOCATION INT＝INTERSECTION，NON＝NON－INTERSECTION
NTFYHOUR NOTIFY HOUR $=01$ TO 12 IS AM， 12 THRU 24 IS PM（MILITARY TIME） ACCDTYPE ACCIDENT TYPE M．V．I．T＝MOTOR VEHICLE IN TRANSPORT OTHR RDWY＝M．V．I．T IN ANOTHER ROADWY MNRCOLL MANNER OF COLLISION SSS＝SIDE SWIPE SAME，SSO＝SIDE SWIPE OPPOSITE NO COLL＝NO COLLISION WITH M．V．I．T
 DRVRDOIN SL／STP＝SLOWING OR STOPPING LG PRK＝LEGALLY PARKED NO PASSING ZONE OVT LT＝OVERTURN LEFT RTOR＝RIGHT TURN ON RED

$$
1997 \quad 1
$$

$0 \propto>\infty-\infty N$
$\vdash ロ>-ロ ッ \propto N$ $\cdots \stackrel{9}{c}$

$\Sigma \geq \propto \omega 0$ ・ー

くいいのトンロー $\vdash \mathrm{O}+\mathrm{\leftarrow}$ トロッルス？《リヒロッフロ
－ローツロスロ
$\propto 0<0 \cup O \geq 0$
$\propto O \ll$ ロロ
$\propto 0<0>1 \sim \propto \vdash$ モャルンーエロコロ ＜$\rightarrow \boldsymbol{\square}$

ぐーガーの
くーエコン \rightarrow マトローの $\rightarrow \geq 1-a \rightarrow \infty$

《UUローロひ
$\propto \square \square ー \infty$
$\propto ロ \approx \Sigma \infty \propto$
$0 \geq ぃ \vdash \propto$
Oマエエンローの $0 \geq エ エ>\propto ロ$
－エエア
$0 \infty<$

 NNNNMNNNNMNNNNNNNNNNNNFNNNNMNMNNNNMNN

尔㐫

 （ant

[^1]

 즐 0対

isio

A STREET（ONSTR）
NO
 －

$\vdash \propto レ \cup Z ト-N$
$\Delta \propto>\propto ロ O N$

$\underset{\sim}{0}$
a

エスヘuOー」

ソטロト＞ロッル
トOトルホーム \vdash－-m マ

《ひひロッフロ
$\rightarrow \boldsymbol{H}$
$\propto 0<0 \cup O=0$
$\propto O \ll エ O \propto$
 マトレンエロコロ くールルーロ வールトロ《1ーエ3＞

$\rightarrow \geq \vdash \infty \rightarrow \infty$
《ルひロール
$\propto a \infty \rightarrow \infty$
$\alpha 0 \geq \Sigma \infty \propto$

ロスヘトッ
Ozエコンローの 0 マエエフロロ

○スエアフ
Oゅぃ

くuひローフロル トロール《ト」 トロールエコ $\alpha 000 \sim \rightarrow \infty$
－ートーロスロ
$\propto 0 \propto \infty \omega O \geq 0$
$\propto 0 \propto 0 エ O \propto$
$\propto O<O>ル \propto ャ$
マトルフエロコロ

ぐーエコン
$\cdots \geq 10 \cdots \infty$
$\rightarrow z \longmapsto O \rightarrow \propto$
《ルローロール
ェロロール
$\propto \Omega=\Sigma \infty \propto$
－マーいトロ O飞エエンローの ロスエエンロロ

○スエコン
－m い

灾以

 00000000000000000000000000000000000000 OOOMNOFONMOOOFOFOOOF－TOOOMOOONFNOOFOOF

市

ONOOOOFOONOOONONOOMWOONNFNOOFMNONOOOOO
 00000000000000000000000000000000000000

[^2]
No
N
0
0
0
0
0
0
0
0㟶
 \cdots \qquad

$0 \propto>\infty 0$ O下	
ーローロー	z 2 z 2 又

＜ひ ローフロール
ミェェ○ェェ

ーロールムト」
トロトロマつ －ronoo录々こそこの

$\propto 0<0 \omega O \approx 0$

$\propto 0<6 \pm 0 \propto$系灾灾灾
 $\propto 0<0>\omega \propto 1$ マトルフエロコロ くーいルーくロ ํロヘベニッ

ぶールトロ

 くトエ エン \rightarrow ニトロール ＜uUO－OU

$\propto a \geq \Sigma \infty \propto$

$3 x$

[^3]－$x>\infty 00 \mathrm{ON}$

ぐひーロースのル $ー$ ロールぐー トロトール マ
$<000 \omega>\infty$

コトリロス
$\propto 0<0$ OOZ

ヘロ《の＞w α マールンエロコロ がコルーいくら

ぐーのよか

《ーエアフ

\cdots マトローロ 100日－ 0 ェロロール
$\propto \Omega z=\infty \propto$

○スいーか
○ズエネフローロ
 Oマエン〉
0∞

心

 ๙

 ， そ
 トートートート」

こモエ м

くいひローンロル ーロームぐー」 1 ーロールて氏ひUローフロ

いールロスロ
$\propto 0<0 \cup O \geq 0$
$\propto O \propto ロ$ エロ \propto
$\propto 0<\square>$ แ $\propto ト$ シャルフエロコャ

ぐトツよく

《ーエアン
\rightarrow ユッロール
$\rightarrow z+0-\alpha$
区uリOーOU
$\propto \square 0 \mapsto \omega$

○エツトロ Oユエアフローの Oスエアフロロ －ユエアフ $0 \infty \infty$

항

 ㅇ
 00000000000000000000000000000000000000

宏

 ロ 毋

 000000000000000000000000000000000000

ェuルースミmの

 $\triangle \propto>\infty 00 \sim$

㒸品詋品
$\vdash \propto>-\Delta-\propto N \quad z \geq \omega z \omega z$

Non品の品

[^0]: 4 Mainline traffic volumes were obtained from both WisDOT and counts taken on November 19 and 20, 1997. Traffic turning counts were also recorded on November 19 from 7 to 9 A.M. and 2 to 6 P.M. and December 16 and 17 from 7:15 to 8:15 A.M. and 3:15 to 4:15 P.M. at 15 minute intervals.

[^1]:

 IIH

[^2]: FROM A STREET（ATSTR）QR HIGHWAY（ATHWY）

 NTFYHOUR NOTIFY HOUR $=01$ TO 12 IS AM， 12 THRU 24 IS PM（MILITARY TIME）
 ACCDTYPE ACCIDENT TYPE M．V．I．T $=$ MOTOR VEHICLE IN YRANSPORT OTHR RDUY
 ACCDTYPE ACCIDENT TYPE M．V．I．T＝MOTOR VEHICLE IN YRANSPORT OTHR RDWY＝M．V．I．T IN ANOTHER ROADWY
 OBJ•NT FX＝OTHER OBJECT NOT FIXED IMPT ATTN＝IMPACT ATTTTENUATOR
 MNRCOLL MANNER OF COLLISION SSS $=$ SIDE SWIPE SAME，SSO $=$ SIDE SWIPE OPPOSITE NO COLL＝NO COLLISION WITH M．V．I．T
 GEOMETRICS FT $=$ FLAT HL $=H I L L ~ C U ~ C U R V E ~ F T ~$
 DRVRDOIN SL／STP＝SLOWING OR STOPPING LG PRK＝LEGALLY PARKED NO PASSING ZONE OVT LT＝OVERTURN LEFT RTOR＝RIGHT TURN ON RED

[^3]: DRVRDOIN SL／STP＝SLOWING OR STOPPING LG PRK＝LEGALLY PARKED

