CITY OF MADISON HIGH INJURY NETWORK 2017-2019

Wisconsin Traffic Operations and Safety Laboratory Department of Civil and Environmental Engineering University of Wisconsin – Madison

Overview

Vision Zero

- Strategy aimed at eliminating traffic fatalities and severe injuries while increasing safe, healthy, and equitable mobility for all road users
- Originated in Sweden in the 1990s
- Proven successful across Europe and gaining acceptance in the US
- The City of Madison is in the process of adopting Vision Zero

Overview

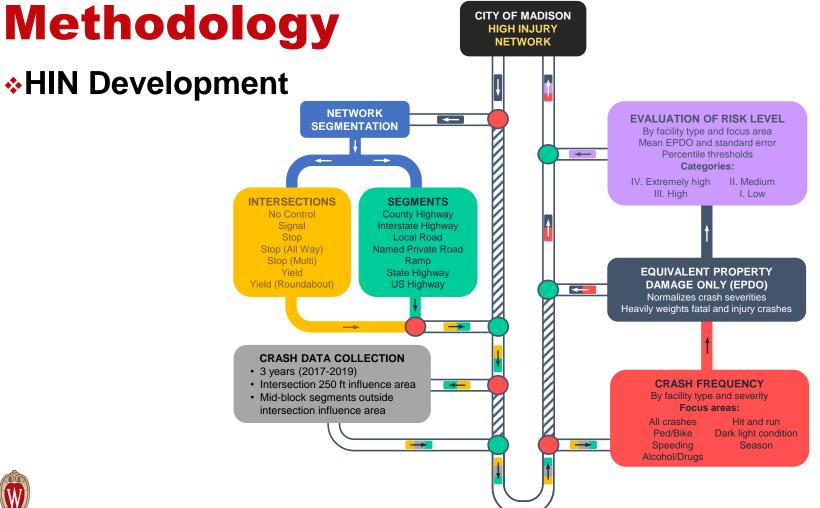
Vision Zero Commitment

- Build and sustain leadership, collaboration, and accountability
 - o Transportation professionals
 - Public health officials
 - o Police
 - Policymakers and community members
- Collecting, analyzing, and using DATA
 - o Understand trends
 - o Potential disproportionate impacts on certain populations
- Prioritizing equity and community engagement
- Managing speed to safe levels
- Setting timeline to achieve zero traffic deaths and serious injuries

Overview

Vision Zero: High Injury Network (HIN)

- Recommends the implementation of High Injury Networks
- Data driven approach to safety analysis and decision making
- Mapping of roadways in the network where high number and severe crashes concentrate
- Contribute to:
 - o Determine geographic areas where crashes are concentrated
 - o Focus efforts on the most challenging areas and crash factors
 - o Strengthen collaboration for road improvements and education campaigns
- Prioritize investments


City of Madison Staff

- Network segmentation
 - o 4,590 intersections
 - o 8,855 segments
- Crash data collection
 - o Three years (2017-2019)
 - o Intersections: 250 ft buffer
 - Segments: continuous mid-block roadway sections outside the 250 ft buffer

TOPS Lab

- Developed practical and repeatable analytical process to obtain HIN
- Statistical analysis
 - o Crash Frequency
 - Equivalent Property Damage Only (EPDO)

Crash Frequency

- Number of crashes over a period of analysis at a roadway facility
- Without yearly averaging (i.e., 11 crashes over three years)
- Roadway segments normalized to crashes per mile

Equivalent Property Damage Only (EPDO)

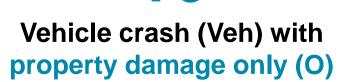
- Safety measure that allows fatal and injury crashes (KABC) to be normalized to property damage crashes (O).
- Using crash costs, weights were estimated to determine the equivalency of KABC crashes to O crashes
- Crash costs and EPDO weights available from Madison MPO 2012-2016 research project

Equivalent Property Damage Only (EPDO)

- By crash type
 - o Motor vehicle-pedestrian crash (Ped)
 - o Motor vehicle-bicycle crash (Bike)
 - o Motor vehicle crash (Veh)

Severity			Crash Cost		EP	PDO Weight		
		Ped	Bike	Veh	Ped	Bike	Veh	
Κ	Fatal	\$3,305,922	\$3,147,627	\$3,782,512	135.9	129.4	155.5	
Α	Incapacitating	\$433,383	\$362,759	\$389,169	17.8	14.9	16.0	
В	Non-Incapacitating	\$113,100	\$90,303	\$107,674	4.7	3.7	4.4	
С	Possible Injury	\$73,539	\$60,060	\$56,365	3.0	2.5	2.3	
0	Property Damage	\$35,692	\$49,042	\$24,322	1.5	2.0	1.0	

* *


EPDO Examples

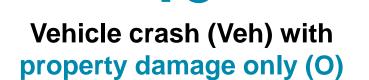
Severity			Crash Cost		EP	EPDO Weight		
		Ped	Bike	Veh	Ped	Bike	Veh	
Κ	Fatal	\$3,305,922	\$3,147,627	\$3,782,512	135.9	129.4	155.5	
Α	Incapacitating	\$433,383	\$362,759	\$389,169	17.8	14.9	16.0	
В	Non-Incapacitating	\$113,100	\$90,303	\$107,674	4.7	3.7	4.4	
С	Possible Injury	\$73,539	\$60,060	\$56,365	3.0	2.5	2.3	
0	Property Damage	\$35,692	\$49,042	\$24,322	1.5	2.0	1.0	

EXAMPLE 1 Vehicle Crashes

Vehicle crash (Veh) with incapacitating injury (A)

Methodology

EPDO Examples


Severity			Crash Cost		EPDO Weight		
		Ped	Bike	Veh	Ped	Bike	Veh
Κ	Fatal	\$3,305,922	\$3,147,627	\$3,782,512	135.9	129.4	155.5
Α	Incapacitating	\$433,383	\$362,759	\$389,169	17.8	14.9	16.0
В	Non-Incapacitating	\$113,100	\$90,303	\$107,674	4.7	3.7	4.4
С	Possible Injury	\$73,539	\$60,060	\$56,365	3.0	2.5	2.3
0	Property Damage	\$35,692	\$49,042	\$24,322	1.5	2.0	1.0

EXAMPLE 2 Pedestrian Crashes

Vehicle-Pedestrian crash (Ped) with fatal injury (K)

Vehicle crash (Veh) with property damage only (O)

15

EXAMPLE 3 Bicycle Crashes

EPDO Examples

Severity			Crash Cost		EPDO Weight		
		Ped	Bike	Veh	Ped	Bike	Veh
Κ	Fatal	\$3,305,922	\$3,147,627	\$3,782,512	135.9	129.4	155.5
Α	Incapacitating	\$433,383	\$362,759	\$389,169	17.8	14.9	16.0
В	Non-Incapacitating	\$113,100	\$90,303	\$107,674	4.7	3.7	4.4
С	Possible Injury	\$73,539	\$60,060	\$56,365	3.0	2.5	2.3
0	Property Damage	\$35,692	\$49,042	\$24,322	1.5	2.0	1.0

Methodology

Vehicle-Bike crash (Ped)

with incapacitating injury (A)

High Injury Network (HIN)

- Safety analysis of intersections and segments based on EPDO
- Locations with EPDO higher than threshold
- 65th percentile threshold
- Mapping of high injury intersections and segments
- Combination of influence area of high injury facilities

